- M68KVSF/D4

M68000 Family
VERSAdos System Facilities
Reference Manual

et e SIS

QUALITY e PEOPLE e PERFORMANCE



@ MOTOROLA

M68KVSF/AL

‘ OCTOBER 1983

ADDENDUM
TO
M68000 FAMILY
VERSAdos SYSTEM FACILITIES.

REFERENCE MANUAL

M6 8KVSE /D4
This addendum transmits a replacement page for page 4-123/4-124. It reflects a
change in the name of the chain file used to link TRANSFER, from LINKTRAN.CEF to

TRANSFER.LF .

Insert the new page into the manual and discard the original page of the same
rumber. It is suggested that you insert this title page into the manual behind
the front cover, as a record of the change.

16826 PRINTED (N USA (10/83) 8PS 34




M6 8KVSF /D4

SEPTEMBER 1983

M68000 FAMILY
VERSAdos SYSTEM FACILITIES

REFERENCE MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inmaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does 1ot assume any
liability arising out cf the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or
the rights of others.

DEbug, EXORmacs, EXORterm, MACSbug, RMS68K, SyMbug, TENbug, VERSAbug, VERSAdos,
VERSAmodule, YMCbug, VMC 68/2, WMEbug, VME/10, and VMEmodule are trademarks of
Motorola Inc.

SASI is a trademark of Shugart Associates.

Fourth Edition
Copyright 1983 by Motorola Inc.
Third Edition June 1982




5 5]
4] ot et Bt et e et et b bt et el et pe b P p b e 0 OO

NN N
d e e b b ol b W W W W NN N N

NN 3%

e © e e ® © 6 ® © © e € e & o & o 2
SIS N ST OY U s s o o B o o o B N

e e e ® e e e 2 @

® L]

e ® L) e L] e e ®

ot

L] L
AT AU b Wi

o @
A B =

e e o e e ©» 8 o #

e e e & e e @ °
N

W N

W Wk
Py

[ Y I VA ]

YUY W

W N

TABLE OF CONTENTS

GENEFAL INFORMATION

OVERVIEW ~ INTRODUCTION TO VERSAJOS cccoccceccscscsncoscoe
CONVENTIONS USED IN THIS MANUAL cccccvsoscccsccccacscnccce
VERSAJos FILE ORGANIZATION .ccccccecoccocccoossccoscasconscs
User Session Default ValU€S ..ccecoccccsccccscccccscaccs
Input Field .ccceesccccsccocscscceacccosscosocesscccnscacs
Output Field seececccscccccscscocecsosvoosoosasoscasocons
Listing Field cccococossscccsesccscaocccscsccsssasnsascs
Options Field ccecccocnsoeccosssscsoccccccocsacsccocoscs
23ditional OPLIONS ccoeee.ocecscccerscsccoccocssnscasnca
Command Mnemonic Field Option — At Sign (@) seecoveccee
Input File Descriptor Fields Option - Asterisk (*) ...
Output Catalog Field Option - Ampersand (&) cceccccocse
DEVICE NAME FORMAT .cccecceccvocscscascccscscccsocecanacscsce
FILE DESCPIPTOR FOKMAT .cecccceccoscasacoococscccocsacacase
SYSTEM DISK DESCRIPTIONS cccovcacscesccccncacccoccccccecsns
Diskette-Based SyStem scececcescccosscecacoscocacsaccascen
Hard-Disk Basaed SysStem cccececcccecsccocsccssscoccscoccs
System DiagnoStiCS ccecececccccscccocccacssccsscscoccons

THE FIRST SESSIONS

BASIC CONSIDERATIONS .cccccvoccsossscoccsscnoscscccnscscscne
Software Development cccccccosccscssccsossoscsscacccconsse
Batch ProCceSSifng ceccececcoccccacosccscscoscssnscscoscse
Online ProcesSing ceccccecececcccccssscccscscocssscccccs

OFTEN-USED FACILITIES .cccccccccconcoccscoosscenseocsannoas
Verifying or Setting System Default Values .cccccececcee
Creating or Modifying FileS .cecccocsceccccosccssscescoas
Creating a Load Module cccceccccccncsocosnscccccosccaccs

ASM - Transforming an Assembler Source Program
into a Relccatable Module cccceccecccsccossccccos

PASCAL - Transforming a Pascal Source Program
into a Relocatable Module cccevecccecocaccone
LINK - Binding Relocatable Modules to MemOXY cesceccse
Debugging a Load Module ccccecce csccssccscscsscasevanas

OFTEN-USED UTILITIES .cccccccccenscccosvscacccscocsccsnsscos
INIT - Initializing @ DiSK ccceccococeccccccccscncoccnns
DIR - Directory Display cccveccscsceccacacosccsosccoccsas
LIST - ASCII File DiSPlay cecccccccosccncoccsccccscccvone
COPY - Copying FileS ccececccccoscccossscsvsascacannsenas
DEL — Deleting FileS ccevccccsocecoscceosnssscocsascasse
BACKUP ~ Creating Working DiSkS cvceccecccosvccsscsccccaca

Page

1-1
1-2
1-3
1-4
1-4
1-4
1-4
1-5
1-5
1-5
1-5
1-6
1-6
1-6
1-7
1-9
1-10
1-10
1-11

2-1
2-1

2-3
2-3
2-3
2--4
2-4
2-6

2-6

2-10
2-11
2-15
2-16
2-16
2-17
2-17
2-17
2-18
2-18




TABLE OF CONTENTS (cont'd)

Page
CHAPTER 3 VERSAdos SESSION CONTROL

INTRODUCTION ccccccoescoscscoccccncscccsaasesacsocncsonas 3-1
SESSION CONTROL COMMANDS cuccocescocccoocosscocoscsconccasne 3-2
1 Batch Mode ProcesSing cceccccscccucoscssssccoesscsocooss 3-8
1 Batch Command Syntax (BATCH) cceoccocccccosccssccssns 3-3
1 Batch Job Status (QUERY) «¢.cccocccvcncscsvcocosnscsss 3-4
1 Discontinuation of Batch Jub (CANCEL) ccccecccccocoos 3-4
l Cancel Batch JObS (EIIIMINATE) @080 00 ELE000QEE0O660600 3“'5
1 Messages - Batch Mode COmmandS ceceooececcoccssccosoas  3=5
1 Hold or Release New Batch Jobs (DISPATCH) ccscceccccce 3=6
2 Chain Mode Processing (CAAIN) ccocccccocccsossccoccsass 3-7
2 Invoking Chain Mode Processing ceccceccoccecsosncooes  3=9
2 Unconditional Chain CommandS .ccocccsceseseoscssancsos  3=L1
2 FOR LOOp ProceSSing ccecscccccocescessccssccsccossecns  I~14
2 Conditional Chain File CommandS ecccecccecsooscssanse  3=15
2 Aborted Chain File Restart CommandS cccecsecsccoscssce  3=18
2 Composite Chain File ExampleS eccoccecccsceccccosscosss  3=18
3 Arguments Session Control Command (ARGUMENTS) ceceeccces  3=21
4
5
6
7
8
9
1
1
1
1
1
1
1
1

e © @ ® e e & e o © © © © © © ©
L]
U W N G U N

No Arguments Session Control Command (NOARGUMENTS) ¢... 3-25
Break Stop Session Control Command (BSTOP) ccccoccsesse  3=25
Break Terminate Session Control Command (BTER) cceococe 3-26
Continue Session Control Command (CONTINUE) ceccccccose 3-26
Date Session Control Command (DATE) ccossveccscccnsscoes  3=26

°

20 Defaults Session Control Command (DEFAULTS) ccccoccocee 3-27
2,10 Load Session Control Command (LOAD) c:cccesccccccsccsce 3-28
£2.11 Option Session Control Command {OPTION) cvcecceocccosos  3-29
e2.12 Start Session Control Command (START) ccoccecscccoocoone 3-33
«2.13 Stop Session Control Command (STOP) ccccecccsoceccscsses  3=35
2.14 Terminate Session Control Command (TERMINATE) ceccccceo 3-36
215 Time Session Control Command (TIME) ccceccoccccccccsoas 3-37
2.1€ Use Session Control Command (USE) ccecccccccccccccccone 3-38
02,17 ~ Session Control Command cececveccscosscosscssscssscoes  3—40

VERSAdos HARD DISK SYSTEM SESSION CONTROL ccocceccccoscoco  3=40
l ASSign SeSSiOD Control Co“mm (ASSIGN) P06 EECEOECOCCE QD 3"41
2 Close SeSSiOﬂ COD'CIOI. Cmm} (CL%E) 2600 eeeBOR0EOEO 6T 3“43
3 %lp SeSSiOD COntrOl COIH’(IaIﬁ (HH‘P) ¢C06 0860 2C00ECEO00CECS 3""43
4
5

WWWWwWWwLWwWWwRwWwWwLwWwewlwwwwwblwwwbbwwbWwwbbwwwww w
®
WWWWWWINNNRNMMNNNNNNDNRRNNDNNDDNNMNNNNNMDMNDNMNMNMNNNNNDDNDNDND DD

News Session Control Command (NEWS) ccccecccccscccccscsns 3-44
DisSa’ﬂinatiOﬂ of NWS al]d Systan Information IR K] 3’"‘44

VERSAdos UTILITIES

INTRODUCTION ccceocosccccennscooossccocccoccooosacsncsooan 4-1
COMMON UTILITIES cecovocococococscoccsoncscccosccvscocoee 4=l
BACKUP Utility (BACKUP) coccoccscoccccosnsosssscoscsccce  4=2
Build S-Record Utility (BUILDS) cocccvccocsccoccoccoccs  4=12
Connect Utility (CONNECT) ccccesccvscesccvccscoccasccos  4=14
Copy Utility (COPY) cecvecscocccoocccscsccacsossscscsos  4=16
mlete Utility (DEL) 6006000 CCIIVGCEOTOOEGEOEOBO0EODOOEE 4"'21
Directory Utility (DIR) ececcoocccocvocccococencosncscoe 423
Disk Dismounting Utility (DISMOUNT) cceccvvocrcovccsoas  4=28
Dump Utility (DUMP) cececoecsoccscccsvcscoccocscscsoccsos  4=29
Dump Analysis Utility (DUMPANAL) ccocccscecscccoscoscae  4=36
Free Utilj.ty (FREE) 6200 0ECORE0COOCEVOECOOOEO6CCCOO0CRG0G O 4"44

e & o
®

e
L3

g

®
L]

e
=0 <AV W

°
[

.
L]

®
®

Ld

Ll O SN - NN N S SN S
L

RMRANMNMNDMNNNDMMDBNDDNDE
e

ii




TABLE OF CONTENTS (cont'd)

0 CHAPTER 4 VERSAdos UTILITIES (cont'd)

Initialize Utility (INIT) ccoccccoscccocacccsosscncnses  4=45
Library Utility (LIB) cecoccsccccovsoscceccsccscconsonca  4=51
List Utility (LIST) cccoecscccccosossosasccosscccnccsss 4-57
Build Load Module Utility (MBLIM) ccvcccosccocssoccsccoss  4=061
Migrate Utility (MIGR) ccocescoccccccsccccooccscansceoe  4=64
Disk Mounting Utility (MOUNT) cececococccccccccoaconcos 4=66
Patch Utility (PATCH) 6P eL0OECRCOOCOEDNOCEOEOCOEO06060C0G6E 4‘75
PrintD\.m’pUtility (PRTDUMP) 60060 0C000CO0COCEOERLO0GE 4"“81
Rename Utility (RENAME) ccecocecccsacscsccssosioacasess  4=85
Repair Utility (REPAIR) cccccervoscecccscococccsascsoas 4=87
Scratch Utility (SCRATCH) 9B eC0COGGO0000C0CE0E0000CEO00GE0E 4“102
SnapShOt Utility (SNAPSHOT) ©CEOE0E00COEOEDOBOCERECOE0ECOQ 4“103
System Analysis Utility (SYSANAL) ccccocecccccccccncsnse  4=104
Transfer ASCII File Utility (TRANSFER) ccoccccccscccocss 4-112
ASCII File Transfer Command FOYMAL eceoceosccccscccses  4~116
.2 Transfer ProtoC0l cecesccsvoccoccsscsococssccscssoccs  4=117
.3 File Transfer ReliabilitV cecececcecccecocescsoscaecos  4-122
.4 Transfer Programs and FileS vteccevccooscceccscccccsss  4=123
Upload S-Records Utility (UPLOADS) cccceccceccvescocccoce  4=125
Error Message File Generator Program (EMFGEN) ccoeooess  4-129
1 EMFGEN Cormmand SYNtax cececceccocscsceccsscccsossonase  4=129
2 Error Message File Form:i.t for ERRORMSG.SA .cccacecoce  4-129
3 EMFGEN OULPUEL eecocccecscvcscccssccsccccascssnascsace  4=133
Error Message Handler .cceccococessocoosasccocoocascosas  4=134
1 Program ReQUiXementS cevcesocosoccescssaccccscecosoos  4=134
] Error Message Parameter Block FOrmat ceececececccsccss  4-134
3
4
5

e e ¢ e e © ® © & & 8 o
¢ ¢ ® o © e © & © © © o ©

e o o @ e o 8 & © ¢ o o ®
s 85 e o ¢ o © o © o © o
NNRNMNNNMNNNNNNNONNDDNNDN NN = = b e

Program Initiation sccecccecccesosocecossvcosccocsces  4=135
BError Message FOIMAt ceecvcocscsecocscsoscnscsacoccos  4=136
EIIOIS © 00 0C 6 ECIOBEDCOEEGOLOOEEGCEGEO0EOINECEEOEOCEBTCECE 4"136
HARD DISK SYSTEM UTILITIES sccccocccecoccsososcovesssences  4=138
Spooler Task Utility (SPL) cceovcvcsccccsncessccccccass 4=~138
Spcoling Utility (SPOOL) ecccesccccosscsccccescssnssoecs  4=140
Help Command Syntax (HELP) cecoveeccccoccccsscscaseoa  4=141
Queue Command Syntax (QUEUE) ccceoccecccsccsoccscoscs  4=141
Cancel Command Syntax (CANC) ceccocccsccccc.ccsanocsece  4=144
Continue Cmrﬁ Syntax (CONT) ©6CC000ECE00CEEOE0000C0 4"‘145
Forms Command Syntax (FORM) ssccccocccccccccccocoscae  4=146
Print Command Syntax (PRIN) ccccecoccocccccccosscoses  4=147
Start Command Syntax (STAR) ccccececccsccccccssscccsscs  4=148
Copies Command Syntax (COPI) ceeeeccescccecccccoccoce  4=149
Spooling Utility Error MesSagesS cecececccssccccscesses  4-149
Segsions Utility (SESSIONS) ccocosccccccccssssscnsccoes  4=150

® e L L] Ll e
® L] ® L e
e o SNSNSlNSNSRIOO N AU BB RWNNFOOVDO-SOWUMSWN -
L]
Pt

L]
WWWWWWRwWWWWwWWWiNRNNNBDRINAOENMNMDRNNBRNDDDDNDDIDROMNDRNNDDDDN
e

®
®

WNMNNNNNDNDND NN
L]
WO SIO U (W IN

@

(8]

SECURITY ADMINSTRATION

INTRODUCTION cccococoscccocsosocoonssssscsscuocsccosssoos 5-1
VERSBdos SECURITY ADMINISTRATION cccccccccccccsccococncse 5-1
1 The Initial Use of VERSAAOS SeCUrity ccocceccccscsccoce  9=2
.2 Secure System Control Command (SECURE) ccoceccccscococe 93
3 S-Word System Control Command (SWORD) ccceccoccccsscese  5=3

(SN NS § Lo S N A T N Y N - T S S N SN N T Sl
.

iii




g
o]
(=2}

e o ® e e & e @
® e o o © e

e
3

AN NN
e
®
= HWRONAU & WN

L]
(=]

A

® e
[N V] W W W W N MNRNMNMMRNMMMBRNDE
e e

?
®

RO OO
) e

°

[+3] U o [0 S

°
@

[+ 3K [~ W <)
e ®

:

APPENDIX A

TABLE OF CONTENTS (cont'd)

SECURITY ADMINISTRATION (cont'd)

Password System Control Command (PASS) ccccccceccccccacs
Valid System Utility (VALID) ceeuvococccscacscessccnosans
Novalid System Utility (NOVALID) ccceccecccscccceccccsos
Account System Utility (ACCT) secececcccscsccccocooccsas
MODIFYING THE OPERATION OF USER SESSION MANAGEMENT c¢coccoe

LIBRARY OF EXECUTABLE FUNCTIONS, MACROS, CONSTANTS, AND
DATA STRUCTURE CONFIGURATORS

INTRG)UCTION 20COC0CEECOEEOOOOLEO00OEEOEOIOCOOEOEOEDNGELOO006C0E
mmABLE FUNCTIWS ©e G OCEOGCCBE0C0OOEOOOOEE0 IEEOOCCCOEEOOCH

PAEE,'0.'.‘.0...‘l...‘..’l..l...I...“..'O.l'.&.’l‘...b.
EDITFILE ccocececcoccccossocosscccocsecooscosossconcssaecs
OPTIW @@ 6 e00G0OE6GEEEOEOEEELLOEEOOC06OG660CEEEEHEEEEHEE0VEEEE®
Argument Substitution and Associated Functions - SBARG
TIME@W 66 660060000 EEFEREVEEEOEOOOEEEOO0OEOESOEEEIOCEEECEE O
Binary-to~ASCII Date Conversion - ODATCONV and GDATCONV
Binary-to-Binary Date Conversion - DATEGO and DATEOG ...
Binary-to-ASCII Decimal Conversion - BDOONV cececcnconas
Binary-to-Hexadecimal Conversion - BHWCVT and BHLCVT ...
ASCII Decimal/ASCIT Hexadecimal-to-Binary Conversion

- MAL CEeECECOCOELEO0O0PO0EOEDEEOCOEEEOECEIDOCOEEOEOO
BSCII Decimal-to-Binary Conversion — CVT2 ..eescccseccce

MACROS, SYSTEM CONSTANTS, AND DATA STRUCTURE JONFIGURATORS

Constants and Configurators for Executive Calls cccccsoe
Disk Structure Configurators and Constants cceccocccoccoe
Macros, Constants, and Configurators for

Iw am H{smlls ® 0 e EeOREOOCEO000CEOROOROECECOOOGEEQCO0060QE
Constants and Configurators for Task Control Blocks «...
Executive Request Macro and Constants for the

Requested Directive cccvcocesscescccososcscacsscsocoss
Constants and Configurators for Task Segment Tables ....

CHARACTER CLASSIFICATION CODES cccoccsvsarcecoccccecanccco

THE BOOTLOAD FILE - IPL.SY

RESIDENT DEBUG MONITOR BO COMMAND FUNCTION ccececcccccccas
FUNCTIONS OF IPL.SY cccccccccsccooccocccnnacsoccconscncons
IPL.SY MODIFICATION FOR WINCHESTER/SASI DRIVERS ccceccccoe

VID Modification for VM0l-Based SystemsS c¢cceccccccccvecea
BO COMMAND EXECUTION SEQUENCE cccvcosccsscccsssccsscsccsccs
RESETTING SECTOR 0 POINTERS TO IPL.SY LOCATION scovsceccecos

S"me‘rm m’r @COCEnOOEEOEOOCVEOOEGOOENOOEEOBEEEEODO

iv

Page

5-4
5-5
5-6
5-7
5-10

6-1
6-1
6-3
6-4
6-6
6-8
6-9
6-10
6-11
6--12
6-12

6-13
6-13
6-14
6-14
6-14

6-14
6-14

6-15
6-15
6-15

7=1
7-1
7-2
7=3
7=3
7-4

A-1




FIGURE 2-1.
2-2,
2=3,
2-4.
2=5.
2-6.
2~T.
2-8.
2=9.
2-10.
4-1.
4-2,
4.3.
4-4.,
4-5,
4-6.
4-7.
5-1.
5-2O
6-1.
6-2.

TABLE 1-1.
4-1.
4-2.
4-3,
4-4.
6-1.
6~2.

LIST OF ILLUSTRATIONS

Software Development PrOCeSS cececcscccsccccacscccosssoae
Assembler Source Program TESTPROG.SA scccoccscococonsacss
Listing from Assembly Of TESTPROG.SA cccoccocccccssconscs
Assembler Source Routine ASMRTN.SA cccececvocoocconccscns
Listing from Assembly Of ASMRTN.SA cccsecovcccssssvescaas
Pascal Source Program PASCPROG.SA ceccecccccscecosssoccsce
Listing from Compilation of PASCPROG.SA ccecoscccosecccns
Listing Obtained by Linking TESTPROG.RO with ASMRTN.RO ..
Listing Obtained by Linking PASCPROG.RO with ASMRTN.RO ..
Display Resulting From Execution of PRNTLINS.LO seccceoso
COPY Commmand ExamPle ccecesccosccscccccccsesscscscccsvocas
Typical DUMP .cececccceccscccocacessasososcosasoosoncscns
PATCH Utility EXampPle coccccccccccoccccocsacosococcccocacs
VERSAdoSs Disk StrucCtUre c.cococecoceccccsccooccccssscsocacse
Primary Directory Block — FOUr SeCtOES .ceecscccncocsocccce
Volume identification Directory -~ Sector 0 cccecceccccoceo
Secondary Directory Block - One SeCtOr cececceccccccscnce
VERSAdos Security Level Flag ccceccocsccccccccsscossssoce
Security Flag Byte cocccecccccrconcecccosscccsoscsccscocos
Assignment of Character Class Code Valu€S .cecccoececcccce
ASCII Code Conversion Table ccceccceccccossccsccvovcoscns

LIST OF TABLES

System Initialization ProcedUreS cccecceccccccscocsccocscn
Destination User Number Field Valu€S ccccoosecsccscoccscce
Destination Catalog Field Valu€S .cceceoccscoccscoccccssns
Destination Disk Volume ID Field Values cccvecccscccccoce
IPC Controller Disk Drive Paramet@rS ccecccccescossccccccs
Command Line Character ClaSSeS secosccccesvoososvscscvosass
Character Class Code Chart scsoccccccocsscsccsscccscscscce

v/vi

2-2
2=5
2-7
2-8
2-9
2=10
2-10
2-12
2-13
2-14
4-17
4-35
4-78
4~-99
4-100
4-101
4-101
5-2
5-11
6-18
6-18



CHAPTER 1
- GENERAL ~
INFORMATION




CHAPTER 1

GENERAL INFORMATION

1.1 OVERVIEW - INTRODUCTION TO VERSAdos

The VERSAdos operating system presents two faces to the environment. Seen from
within the environment, VERSAdos can buffer an application program from the
demanding direct interface with peripherals, yet does not deny such contact.
Seen from without, it frees the user from the exacting requirements of direct
interface with the machine and other system resources.

VERSMos achieves its purpose by means of a modular design. Two of the major
modules are:

a. A real-time multitasking executive kernel which includes a task
controller, an inter-task comwnications facility, an optional memory
management facility, and an initialization facility. A full description
of this software is provided in the M68000 Family Real-Time Multitasking

. Software User's Manual, M6BKRMS68K.

b. An Input/Output (I/0) module comprised of two facilities: Input/Output

. Services (I0S) and File Handling Services (FHS) which between them offer

file and device access, file and device protection, and file management.

A full description of this software is provided in the VERSAdos Data
-Management Services and Program Loader User's Manual, RMS68KIO.

A third major module, Session Control, supplies the means by which the user can
interactively communicate his processing needs to the system. It is the purpose
of this manual to describe these means and the VERSAdos command format, the disk
and file structure, the system utilities, and various other functions provided

by the VERSAdos operating system.

As used above and, unless otherwise specified, as used in the rest of this
manual, the term "VERSAdos" refers to the VERSAdos operating system supplied for
use on one of the following M68000 family-based systems:

. EXORmacs Development System
. VMC 68/2 Microcomputer System

. VME/L0 Microcomputer System

. VERSAmodule 01 or 02 Monoboard Microcomputer (hereafter referred to as the
VM01/VM02)

. VMEmodule Monoboard Microcomputer (hereafter referred to as the MVMELL0)

The standard utilities described in this manual are available to all the above
systems, with the following exceptions. The MBIM utility is functional only
with EXORmacs and VME/10 systems, and the SNAPSHOT utility can be used only with
EXORterm 155 terminals. The DISMOUNT and MOUNT utilities are mot functional on
EXORmnacs.

1-1







Most of the preceding systems use the firmware-resident debug monitor to boot
the furnished initial program load file, IPL.SY, which in turn boots VERSAdos.
VMOl-based systems are initialized differently, because no IPL.SY file is
supplied. Paragraph 7.3.1 describes modifications required for WMOl-based
systems to boot VERSAdos without the IPL.SY program.

The following lists the debug monitor provided with each system.

System Type Debug Monitor
EXORmacs MACShug

VMC 68/2 wiCbug
VME/L10 " TENbug

VM0 l-based VERSAbug

VM0 2-based VERSAbug 2.n
MVME1L0-based VMEbug

The S¥Mbug symbolic debugger and the debugging software DEbug are furnished with
all VERSAdos systems.

1.2 CONVENTIONS USED IN THIS MANUAL

In addition to the use of the term VERSAdos just described, several other
conventions are utilized in the following material. These include:

a. Unless otherwise noted, numbers are given in decimal representation.

b. Hexadecimal numbers are preceded by a dollar sign or denoted as
hexadecimal .

c. Descriptions of command syntax are given in a modified version of the
Backus Naur Form (BNF), a brief description of which is provided below:

< > Angular brackets enclose a symbol, known as a syntactic
variable, that is replaced in a command line by one of a
class of symbols it represents.

| This symbol indicates that a choice is to be made. One
of several symbols separated by this symbol should be
selected.

[ 1 Square brackets enclose a symbol that is optional. The
enclosed symbol may occur zero or one time.

[ J... Square brackets followed by periods enclose a symbol that
is optional/repetitive. it may appear 2zero oOr more
times.

d. A carriage return is required after all operator entries. It is shown,
as (CR), only where necessary for clarity. In some examples, operator
inputs are shown underscored; the underscore is not to be typed.

Much of the information in this manual is summarized in the VERSAdos Reference
Card (MVDOSCARD), which provides a guick reference guide for users familiar with
VERSAdOS .







1.3 VERSAdos FILE ORGANIZATION
Three types of files are created on a disk:

Contiguous These are files within which records are adjacent and
all records are 256 bytes long. They are mainly memory
loadable modules.

Sequential These are files within which records need not be
adjacent or of the same length. They are mainly object
or listing files created by the assembler.

Indexed Sequential These are files of records to which keys cn be attached
allowing VERSAdos to access records within a file by key
for quick retrieval and greater selectivity. They are
usually text files created by the editor.

The type is, in genexal, transparent to the user -- i.e., he cannot choose the
file type. Under some circumstances, however, sequential or indexed sequential
file types can be selected when editing.

The VERSAdos I/0 Services (IOS) accesses a sector within a file by converting
the file's Logical Sector Number (LSN) to a Physical Sector Number (PSN), which
gives the actual location of the sector on the disk. Logical sector numbers are
assigned sequentially even though the sectors may not be physically contiguous.
Thus, although segmented into randomly located blocks of sectors, a file is
treated as a unit of logically contiguous sectors. The actual physical
accessing of a particular sector is done by the disk controller.

At disk initialization, a Volume Identification Directory (VID) is created which
contains volume ID, version and revision of the resident operating system, date
of disk generation, user name identificatior. area and user number, pointers to
the start of the Sector Allocation Table (SAT) and the first Secondary Directory
Block (SDBj, and the length of the SAT., The VID must always reside at PSN 0.
(See the REPAIR utility description for information on the VID.) The SAT
contains a bit map in which cleared bits provide a one-to-one correspondence
with sectors available for allocation.

A directory is maintained on each volume which, for each file on the volume,
contains: the filename, extension, file start, file length, file type, write
and read access codes, and the number and size of records in the file. &
secondary directory contains an entry for each unique user number and catalog
name on the volume.

So that the entire file space need not be contiguous, the disk sectors for a
file are allocated in available groups of physically contiguous sectors called
data blocks. This permits th dynamic allocation and deallocation of space
without affecting the location of existing files. The File Access Block (FAB)
describes the location of data blocks allocated to a file. A FAB can be from
one to 20 sectors in length. The length of each data block for a given file is
the same, although different files can have different data block sizes. The
minimom data bleock length is currently four sectors.

. 1-3







1.4 COMMAND FORMAT

A VERSAdos command line can contain five fields: command mneronic, input,
output, listing, and options. The input and output fields are supported by all
utilities; the listing and options fields are supported by particular utilities.
Maximum command line length is 160 characters. Multiple commands on the same
line are not permitted. The command line is terminated with a (CR). The
standard format for a command line is:

<command mnemonic> [<input field>][,<output field>][,<listing field>]
[;<options>]

1.4.1 User Session Default Values

when a user first logs on the system, the session control module initiates a
session for the user on that terminal which continues until the user logs off.
At the time of logon, default values for the volume ID, user number, and catalog
name fields within the VERSAdos file descriptor are established to permit
abbreviation of command entry. A particular command may not require an explicit
entry in one or more of these fields. In this case, the appropriate session
default value(s) is used as the value for the omitted entry.

The nature of the functions provided by some commands also permit command entry
abbreviation to include fields for which session defaults do not exist -- i.e.,
filename, extension, listing, and options. In such cases, the appropriate
values are known to the command and are supplied as required.

1.4.2 Input Field

The input or source field may contain device names or file descriptors which are
appropriate for the command. File descriptors may be fully specified or
abbreviated, in which case default values are assumed as required by the
particular command. Concatenation of inputs is done by using the slash /)
character; e.g., filel/file2 or volume ID/file. Space characters are not
allowed in the input field, which is terminated by one of the following:

a. The first comma (output field follows), or space.
b. Semicolon (no output field, but options present).
c. (CR) (no output or options field).

1.4.3 Output Field

The output or destination field may contain device names or file descriptors
which are appropriate for the command. File descriptors may be fully specified
or abbreviated, in which case default values are assumed as required by the
particular command. Spaces are not allowed. The output field is terminated by:

a. Comma (listing field follows) or space.
b. Semicolon (options follow).
c. (CR) (no listing field or options).




1.4.4 Listing Field

Where a program or utility has the capability of creating a listing, the listing
field may contain device names or file descriptors as appropriate. File
descriptors may be fully specified or abbreviated, in which case default values
are assumed as required by the particular command. The listing field is
teminated by:

a. Semicolon (options follow).
b. (CR}) (no options).

1.4.5 Options Field

The options field is opened by a semicolon, consists of alphanumeric and/ox
special characters, and is terminated with a carriagc return. Specific forms of
options are found in the descriptions of session control commands, system
utility commands, and system languages.

1.4.6 BAdditional Options

The following three special options provide additional variations in command
execution.

1.4.6.1 Command Mnemonic Field Option - At Sign (@). ‘The symbol "@" may
optionally be entered preceding a session control command or a system utility
call to obtain a variation in the usual processing. If used before a command
for which no variation exists, it is ignored. Specific uses and the variation
obtained are shown below:

[@]<utility name>
[@] STAR [<task name>] Obtains prompt at start of execution (without @,
[@]CONT [<task name>] task must be completed).

[@]BYE END SESSION message printed (same as OFF).

[@]CHAI <filenams> Inhibits ~learing of conditional processing of
[@]<filename> CF pseudo registers (Ri, RA, FD).

{elasSsI Passes assigmment to all successive user tasks

loaded or started until a CLOSE is issued. (ASSI
without @ passes assignments to next user task
only) .

[@] ExD Terminates chain processing, regardless of nesting
depth.

1-5



DEVICE NAME
FORMAT




!
|
%
%
|
|
|
;
|
|
z
%
|
|
|
|
%
|
|

1.4.6.2 Input File Descriptor Fields Option - Asterisk (*). The "*", often
called “wildcard™, represents ANY character or name. When the * is the last
character in a field, it means that the remainder of the field is any (or all)
characters. Aan * in one or more character positions in a field means any
characters in that/those positions. A field comprised of a single * means all
characters. The following examples assume explicit or implicit entries in the
preceding volume and user fields and a blank catalog field.

filename . * all files with the specified filename having any extension.

* extension Bll files with any filename having the specified extension.

k * all files; i.e., those having any filename and extension.

TOM* . SA All files beginning with TOM and having extension .SA.
1.4.6.3 OQutput Catalog Field Option - Ampersand (§). An explicit (non-space)
catalog name field default value which was established at session 0001 or
through subsequent invocation of the USE session control command can be blanked

by entering the "&" symbol in the output cataleg field of a utility command line
- for example:

USE <user>.&

Execution of the above command line changes the existing catalog name to eight
space characters in the command line buffer which are displayed as a blank
catalog field.

1.5 DEVICE NAME FORMAT

A device nam2 can be specified in the input and/or output fields within the
VERSAdos command line. Device name is a single field of omwe to five
alphanumcric characters and the pound sign (#). Specific device names for a
particular system configuration are established when the operating system is
generated. Refer to the System Generation Facility User's Guide, M68KSYSGEN.
Device names begin with a pound sign (#), usually have a 2-alphabetic character
memonic, and usually have a 2-digit nurber. The "#" used without a descriptor
refers to the terminal on which the user logged on to the system. Following are

examnples:
$FDOO Floppy disk drive 00 §HDO0 Hard disk drive 00

#FDO3 Floppy disk drive 03 #HDnn Hard disk drive nn
$ONCO Debug board port 00
$CHNOL Debug board port Ol

#BR Printer
#PRn Printer n
 d The logon terminal

1.6






1.6 FILT DESCRIPTOR FORMAT

A file descriptor cen be specified in the input and/or output fields within the
VERSAdos command line. A fully specified file descriptor consists of six
fields. The volume ID and user number fields establish location and ownership
of the file. The catalog, filename, and extension fields identify the file.
The protect key field provides the desired read/write access. The standard
format of a fully qualified file descriptor is:

<volume ID>:<user number>.<catalog>.<filename>.<extension>(<protect key>)
where:

volume ID A 1- to 4-alphanumeric character string with a leading
alphabetic character. Must be terminated with a coclon (:).

user number One to four decimal numeric digits. Terminated with a period
if any field follows. Must be preceded by a colon (:) if the
file extension is not specified.

catalog A blank field or a l- to 8-alphanumeric character string with
a leading alphabetic character and terminated by a pericd. If
the catalog field is not preceded by a user number field, the
file name and extension must be specified.

filename A 1- to 8-alphanumeric character string with a leading
alphabetic character (except temporary files beginning with
*s" and spooling files beginning with "@".)

extension One or two alphanumeric characters with a leading alphabetic
character and preceded by a delimiting period (.).

protect key A string of two or four alphabetic characters from A through P
only; must be enclosed in parentheses.

Brief descriptions of each of the six file descripter ficlds follow.

Volume ID

This 4-byte ASCII field specifies the ID of the disk or diskette where a file
exists or is to be allocated. The field identifies an online, direct-access
volume.

User Number

This field is the number from ¢ through 9999 that is entered to represent file
ownership.

The values are:
1-9999 Indicates a private user or owner file.
)] Indicates a system file for the administrator, user 0.
* Asterisk is the user rumber “wildcard® that transfers a -2 default
value to the File Handling System (FHS). Can represent any user
mumber, 0 through 9999.

1-7




Catalog

This 8-byte ASCII field is used for a more general level of file identification
than that provided by the filename.

Filename
This 8-byte ASCII field is the main identifier for a file.
Extension

This 2-byte ASCII field provides further file identification according to data
type. The extension name can be user-specified except for default extensions
reserved for use by VERSAdos and its utilities. These extensions are:

Assembly file

Source file assembled at SYSGEN time
Assembly include file

Command code fragments used to build other files
ASCII command file (chain file)
Symbolic debug format

Initialization file

Link file

Link file used at SYSGEN time

Link edit memory map

Load image format

Assembler or Pascal (Phase 2) listing
S-record format

Session management or news file
Overlay image format

Session management

Pascal intermediate code

User profile file (S¥Mbug)

Pascal (Phase 1) listing

Optimized Pascal code

Relocatable object format

Symbolic debug format

BSCII source

System files; e.g., VERSADOS.SY, ERRORMSG.SY
Temporary file

General instruction file

B &

KARPEB3EER22ERLEFEERESRER

These extensions may be used for other purposes as long as the user is aware of
the meanings VERSAdos assigns to them.

Protect Key

This 2-byte binary field holds a fixed code which limits read and/or write
access to a file. Combinations of the characters A through P specified when a
file is created are translated to corresponding binary values which are used by
the FHS subsystem to control access to the file. A non-owner must then match
the sssigned protect key to obtain the permitted access.

A key is comprised of two or four characters. Two characters control read
access. Pour characters control read/write access. Of the possible
combinations of the allowed key characters a file creator could specify for
corditional access, four are reserved. These provide the access control shown
in the following table, and are non-conditional -- that is, a user need not
match a key to obtain the assigned access.

1-8







RESERVED PERMITTED PERMITTED
KEY WRITE ACCESS READ ACCESS
WIR
00|05 Owner Owner, Administrator
‘00| PP Owner Public
PPIOO Owner, Administrator Owner, Administrator
PP| PP Owner, AMministrator Public

(If unspecified, default protect key is PPPP.)

If desired, the RENAME utility can be used by a file owner or the system
administrator to changes the protect key field of the file descriptor.

1.7 SYSTEM DISX DESCRIPTIONS

This section describes the contents of the system disks or diskettes supplied
for use with hard-disk-based or disketts-based systems. Table 1-1 lists the
initialization procedure required by each VERSAdos-compatible system and the
documentation in which the vrocedure is described. Modifications to the
initialization procedure required for Winchester/SASI drivers and VMOl-based

systems are described in paragraph 7.3 of this mamual.

TABLE 1-1. System Initialization Prccedures

SYSTEM TYPE INITIALIZATION PROCEDURE REFERENCE DOCUMENT
EXORmacs via VERSkdos operating system EXORmacs Development System
Operations Manuwal, M68KMACS
or :
with MACSbug BO command MACSbug Monitor Reference
Manual, M6SKMACSBG
VT 68/2 via VERSAdos operating system WiC 68/2-Series Microcomputer
System Manual, MUMCSM
or
with WiCbug BO conmand VMChug Debugging Package
User's Manual, MVMCBUG
VME/10 via VERSAdos operating system VWME/10 Microcomputer System
Overview Manual, M6SKVSOM
or
with TENbug BO command TENbug Debugging Package
User's Manual, M68KTENBG
VM0l-based with VERSAbug BO command VERSEbug Debugging Package
User's Manual, MG6BRKVBUG
VERS2dos 4.2 Custommer Letter,
M68KSYSLET
Vi 2-based with VERSAbug 2.n BO command VERSARbug 2.n Debugging
Package, M6BKVBUGZ
MWMEL10-based with VWEbug BO command Debugging Package

WEbug
User's Marual, MVMEBUG

1-9



1.7.1 Diskette-Based System

Diskette-based EXORmacs systems are provided with diskettes having part numbers
identified in a letter supplied with VERSAdos. Each diskette initialized for
VERSZdos contains a Volume Information Directory (VID). The complement of files
on a diskette can be obtained by logging on the system as user 0 and
interrogating the VID on that diskette through use of the DIR utility (see
Chapter 4).

The diskette inserted in drive 0 is called the system diskette. Because the
system is booted and initialized from it, this diskette must contain the initial
program loader file, IPL.SY, and the operating system file, VERSADOS.SY. Once
the system is brought in, this diskette may be replaced with another containing
the files required for a particular activity. Files are grouped on a diskette
according to general function. On the diskette with VERSADOS.SY, for example,
are the most often-used utilities.

A volume ID is associated with each diskette that has been initialized for
VERSAdos. It is essential that at any one time, no two diskettes in the system
have the same volume ID if files are to be referenced on both. In the same nawe
case, only files on the first volume installed in a drive could be referenced.
The only communication allowed with the second volume would be the physical
sector 1/0 performed by such utilities as BACKUP and DUMP. In spite of this
warning, the volume ID of a backup diskette need not be changed from that of the
master, since these two are together in the system only at BACKUP time. It is
useful to include the file BACKUP.LO on user diskettes so that the BACKUP
command can be invoked and the diskette copied to a scratch diskette in another
drive. Such minimum system diskettes might be created to provide space on the
system diskette for temporary files or for editing, compiling, and assembling
with single-sided diskettes.

User diskettes are those that normally reside in drive 1 in a dual-drive system,
or in drive 1, 2, or 3 in a four-drive system. Dual-drive system user diskettes
should contain, as a minimum, the files VERSADOS.SY and BACKUP.LO for the above
reasons. With a four-drive system, it is not necessary to maintain any
operating system files on the user diskettes, because the system diskette can be
kept in drive 0 while backup is taking place between diskettes in drive 1, 2,
or 3.

1.7.2 Hard-Disk Based System

An EXORmacs or VMC 68/2 system based on a hard disk is supplied with a blank
fixed disk and a disk in a removable cartridge which contains all required
system files. As shipped, the cartridge volume ID and user number are SYST:0.
The initial start-up process initializes the fixed disk as S¥S:0 and copies
files from SYST:0. Included are the chain files STARTUP and RESTORE, the
execution of which initializes the fixed disk and performs the file copying.

A VME/10 is supplied with system files on a fixed Winchester disk that has a
default volume name of SYS.

Copies of the fixed disk ard, when applicable, of the removable disk should be
made and held in reserve. The duplicating process is described in the EXORmacs
Development System Operations Manual, the VMC 68/2-Series Microcomputer System
Marmal, and the VME/L0 Microcomputer System Overview Mamnual. For vWM0l/vM02- and
MVMEl10-based systems, refer to the BACKUP utility, paragraph 4.2.1 of this
marnsal .

1-10




1.7.3 System Diagnostics

On diskette-based EXORmacs systems, one diskette (Volume ID = DIAG) contains the
diagnostic programs for the system resources. On hard-disk based systems, the
diagnostics are included on the system disk.

More information on these files and their use can be found in the EXORmacs
Development System Maintenance Manual (M68KIMM). Diagnostics for the VMC 68/2
system are described in the VMC 68/2-Series Microcomputer System Manual.
Diagnostics for the VME/10 system are described in the VME/10 Microcomputer
System Diagnostics Manual, M68SKVSDM.

1-11/1~12



"CHAPTER 2
"THE FIRST
A SESSIONS




CHAPTER 2

THE FIRST SESSIONS

2.1 BASIC CONSIDERATIONS

The purpose of this chapter is to assist the inexperienced user in developing
application programs. The facilities most generally used are discussed briefly,
leaving many of the less consequential details to be treated in later chapters.
It is assumed that the user has access to VERSAdos, including the data
management services and utilities options, on one of the systems listed in
paragraph 1.1.

2.1.1 Software Development
NOTE

Unless otherwise specified, the designations "M6800O™
and "MC68000" will refer to the entire M58000 family
of microprocessors.

Source programs are created for assembly or compils™ic 24 subsequent debugging
using the M68000 Family CRT Text Editor because of facility it offers for
the entry and modification of program text. Program text is comprised of source
statements written in assembly language or another high-level language -- such
as Pascal, FORTRAN, or COBOL -~ for which the user has a compiler that will run
on the MC68000-based system. Characters are entered from the EXORterm keyboard
or other system console.

The edited source program is assembled or compiled into a relocatable object
file. The M68000 Family Linkage Editor is then called to join that file with
selected files from the user's library of relocatable object modules to create
an absolute load module which can be loaded into memory for execution and/or
debugging. These early steps may be repeated many times to form the libraries
from which files are drawn for the final linking into the application program.
An overall software development scheme is shown in Figure 2-l.

Programs can be developed on a host MC68000 system for use in systems based on
MC6800 family microprocessors including the MC6800, MC6801, MC6805 and MC6809.
Such development requires a cross assembler or cross compiler program and a
cross linkage editor program. To facilitate the transfer of this code, the
cross linkage editor transforms relocatable object modules into an output file
of easily transportable S-records. Once downloaded into memory, the facilities
of the taxget system are used to transform the code from the output file into a
loadable, executable module.

Programs could also be developed on a non-MC68000-based computer system for
MC68000 execution. This development would utilize a cross assembler or cross
compiler and (on an IBM 370 system) a cross linkage editor which would execute
on the host system but produce object code for the MC68000 machine. The
resulting program would be downloaded into the MC68000-based system for the
final linking and/or debugging.

2=1




EDITOR

TERMINAL

FORTRAN,
PASCAL, OR
ASSEMBLER

\\__//

Lg
UTILITY

ASSEMBLER

LIBRARY OF

RELOCATABLE REL.OCATABLE

OBJECT
OBJECT

S RELOCATABLE
SYMBOL

FORTRAN OR
PASCAL.
COMPILER

RELOCATABLE LISTING
OB ECT
MODULE

RO

RELOCATABLE

LINKAGE
EDITOR

OBJIECT
MGOULE

S-RECORD

MODULE

|
s‘
4
g

ABSOLUTE
LOAD
MODULE

SYMbug

TERMINAL

FIGURE 2-1.

22

LISTING

FIRMWARE—
RESIDENT
~EBUG

MONITOR

/

TERMINAL

Software Development Process




D

PROCESSING
MODES &
OFTEN-USED
FACILITIES

i




Details of the resident and cross assemblers and compilers are provided in the
respective manuals for the programs. Descriptions of the debugging programs
supplied with VERSAdos -- DEbug and SYMbug -- are provided in the M68000 Family
S¥Mbug/DEbug Monitors Reference Manual, M68KTYMBG. A firmware-resident
debugging program is also provided with each VERSAdos system. Table 1-1 lists
the appropriate reference mamuals for these programs.

2.2 PROCESSING MODES

Several operating modes are provided to support program development from a
single terminal or multiple terminals in the interactive online mode and in the
batch mode. A user is permitted to initiate multiple, comcurrent batch mode
tasks, yet remain in the interactive online mode of another task if he chooses.

2.2.1 Batch Processing

In the VERSAdos environment, the user not only can start his own job but can
continue operating in the foreground mode while his job is being processed in
the background mode. Batch submissions are made possible through a structure of
commands; the decision of which batch job to process is handled by a circular
job queue. This processing mode is described more fully in paragraph 3.2.1.

2.2.2 Online Processing

Online processing, roughly comparable to foreground processing, includes
execution of commands entered from the console and execution of commands read
from a chain file. The latter is called chain mode processing and is useful to
the application program developer since it can remove the need to reenter every
command in an often-used sequence. Chain mode also offers argumznt
substitution, which further reduces the programmer's work since it can eliminate
the need for repeatedly typing in a long argument, such as a complete file
descriptor, when an argument must be changed. Chain mode processing is
described more fully in paragraph 3.2.2.

2.3 OFTEN-USED FACILITIES

The process of developing an application program on a new development system can
be broken down into general steps, many of which are the same as would be taken
on another system. This section outlines some of the more common steps. It is
assumed that a version of VERSAdos is running on the system for the purposes of
the examples which follow. Unless otherwise stated, it is 2lso assumed that the
user has logged on the system under his own user number (not 0).

2~3



'CREATING
OR




2.3.1 Verifying or Setting System Default Values

Before beginning work and until the user is familiar with the system, it is a
good idea to review and change, il necessary, the user default values. The DEF
and USE session control commands are used to do this. When the user becomes
more proficient with the system, the OPT session control command can be used to
adjust the control ot user session management over the particular session. As
one example, the user can have the processor stop execution of his task on
receipt of a break code.

When the DEF command is input, a message similar to the following is displayed:

DEF
1) SYSTEM VOLUME = SYS: (hard disk-based system)
2) USE DEFAULT VOLUME = SYS:213.NEW.
3) USER NUMBER = 213
USER TASK =
SESSION = 003A
TERMINAL = CN22
OPTION(S! SET

Line 1 shows that the system was initialized from volume S¥YS: —— line 2 shows
that the user's default volume is the same with a default catalog name of NEW.
The user number in line 2 should be the same as the user number in line 3 (the
log on user number); otherwise, access to files on the default volume may be
prevented and other difficulties may be encountered. It the user is working with
a program on a diskette, for example, the length of entered commands can be
shortened by making the diskette his default volume and blanking the default
catalog name (eight blanks using the ampersand as the blanking character.) The
user would do this by invoking the USE command as folliows:

USE VOL1: .&

The resulting display would be identical to that shown for DEF but for line 2)
which would now be:

2) USE DEFAULT VOLUME = VOL1:213..

Hencetorth, user 213 can access files by name on the specified volume without
entering the tully specitied file descriptor. The same technique can be used
when the user has tiles within different catalogs on the same volume.

2.3.2 Creating or Modifying Files

As stated earlier, the CRT Editor is a tacility used for creating a source file.
when called from a console to create a new file, the editor comes up in the CRT
Mode, Page Level, as indicated by the editor prompt (>} in the home position on
the screen. A typical call is:

E TESTPROG
Source lines can now be entered into the new file TESTPROG.SA. The extension
.SA is assumed if another is not specififed. At least one line must be entered

betore quitting the editor, or the file 1s discarded. To exit the editor,
depress the Fl key (the > prompt goes to lower left of the screen, indicating

&4




that the editor has entered the command mode), and enter QUIT. There now exists
an indexed sequential file named TESTPROG.SA with the volume ID, user number ,
and catalog name previcusly shown when the DEF or USE command was executed. The
process tor altering an existing file through use of the editor is similar.
Figure 2-2 is the listing of the example assembler source program, TESTPROG.SA.

MAINMOD IDKRT 1,1 *MAIN TEST PROGRAM
* *THIS PROGRAM TESTS THE FEASIBILITY
* *(OF CALLING ASSEMBLER ROUTIKE
* *PRNTLINZ FROM A PASCAL PROGRAM
XDEF START *PROGRAM ENTRY POINT
XREF PRNTLINZ *ROUTINE TC BE TESTED
SECTION 1
DS.B 128 *RESERVE STACK SPACE
STACK DS.W 0 *
I0SBLK  DC.B 0 *PARAMETER BLOCK START
DC.B 2
DC.W 8
pC.B 0
DC.B 6
DC.W 0
DC.L 0
DC.L BEGHMSG
DC.L EXDMSG
pC.L 0
DC.L 0 *pARAMETER BLOCKX END
BEGMSG  DC.B *THIS ASSEMBLER PROGRAM PRINTS LINE ONE'
DC.HW $0DOA
DC.B "THEN CALLS PRNTLINZ TO PRINT LINE TWO.®
DC.W $ODOA
ENDMSG  EQU *e]
SECTION O
START LEA.L STACK, A7 *INITIALIZE USER STACK PTR
LEA.L I0SBLK,AD *| 0AD I0S PARAM BLK ADDRESS
FRSTLIN TRAP #2 *EXECUTE
NEXTLIN BSR PRNTLIN2 *CALL EXTERMAL MODULE
SUB.L AQ,AQ *®
MOVEQ #15,0C *TERMIMATE TASK
TRAP #1 *
END START

FIGURE 2-2. Assembler Source Program TESTPROG.SA

25




CREATPa




2.3.3 Creating a Load Module

aAfter a source file has been prepared by means of the CRT Editor, the next step
is to assemble the source file if written in M68000 family assembler, or to
compile the source file if written in a high-level language. After the
relocatable object file is obtained, the linkage editor is called to transform
the file into a lcad module. These processes are discussed briefly in the next

three paragraphs.

2.3.3.1 ASM - Transforming an Assembler Source Program into a Relocatable
Module. IF called and passed the name Of a source file, the resident assembler
will produce, by default, a relocatable object code file and a listing file
having the source file name but another extension -- i.e., relocatable object
.RO, listing file .LS. Also by default, the assembler will display warning
messages. Any of these default activities and other assembler features can be
disabled or enabled by specifying the appropriate characters in the command line
options field. These are fully described in the respective manuals for the
programs. Figure 2-3 is the listing obtained from assembly of the sample
program of Figure 2-2 by executing the command line:

ASM TESTPROG;MRD

A later example will demonstrate that a Pascal program can be linked to an
assenbler subroutine as well as to a Pascal subroutine. The example subroutine
ASMRTN.SA is shown in Figure 2-4 and the listing obtained from its assembly in
Figure 2-5.

2-6




MOTORCLA MBB0O00 ASM VERSIOH ®.x FIX : 212 TESTPROG.SA 05/23/83 11:40:14

1 MAINMOD IDNT 1,1 *MAIN TEST PROGRAM
2 * *THIS PROGRAM TESTS THE FEASIBILITY
. 3 * *0F CALLING ASSEMBLER ROUTINE
4 * *PRNTLIN2 FROM A PASCAL PROGRAM
5
6 XDEF  START *PROGRAM ENTRY POINT
7 XREF  PRNTLIN2 *ROUTINE TO BE TESTED
8
9 00000001 SECTION 1
10 1 00000000 00000080 DS.B 128 *RESERVE STACK SPACE
11 1 00000080 00000000  STACK  DS.W O *
12 1 00000080 00 I0SBLK DC.B 0 *PARAMETER BLOCK START
13 1 00000081 02 DC.B 2
14 1 00000082 0008 DC.W 8
| 15 1 00000084 00 R.B 0
16 1 00000085 06 DC.B 6
17 1 00000086 0000 DC.W 0
18 1 00000088 00000000 BC.L 0
19 1 0000008C 0000009C DC.L  BEGMSG
| 20 1 00000090 00000OEB DC.L  ENDMSG
g 21 1 00000094 00000000 BC.L 0
| 22 1 00000098 00000000 BC.L O *PARAMETER BLOCK END
23 1 0000009C 544849532041 BEGMSG DC.B  ‘THIS ASSEMBLER PRGGRAM PRINTS LINE ONE'
g 24 1 000000C2 ODOA DC.W  $ODOA
25 1 000000C4 5448454E2043 DC.B  'THEN CALLS PRNTLIN2 TO PRINT LINE TWO.'
| 26 1 00000CEA ODOA DC.W  $ODOA
‘27 1 000000EB  ENDMSG EQU *a]
28
29 00000000 SECTION 0
30 0 00006000 4FF900000080 START  LEA.L  STACK,A7 *INITIALIZE USER STACK PTR
31 0 00000006 41F900000080 LEA.L  IOSBLK,AG *LOAD 10S PARAM BLK ADDRESS
32 0 0000000C 4E42 FRSTLIN TRAP  £2 *EXECUTE
33 0 0000000E 6100FFFO  NEXTLIN BSR PRMTL INZ *CALL EXTERNAL MODULE
34 0 00000012 91C8 SUB.L  AD,AD *
35 0 00000014 700F MOVEQ  #15,D0 *TERMINATE TASK
36 0 00000016 4E41 TRAP 1 *
37 0 00000000 END START
##x% TOTAL ERRORS 0--

*akd TOTAL WARKINGS 0--
SYMBOL TABLE LISTING

SYMBOL NAME SECT VALYE CROSS REF (LINE NUMBERS)
BEGMSG 1 0000009C -23 19
ENDMSG 1 0000GOEB -27 20
FRSTLIN 0 0000000C -32
F0SBLK 1 00000080 -12 31
REXTLIN 0 0000000E -33
PRETLIN2 AREF =* 00000000 -7 33
STACK 1 00000080 -11 30
START XDEF © 00000000 -30 -6 37
‘ FIGURE 2-3. Listing from Assembly of TESTPRUG.SA

=7




CALLMOD IDNT 0,0 *SUBROUTINE FOR PASCAL CALL
XDEF PRNTLINZ

SECTION 9 *PASCAL REQUIRES ASSEMBLY INTO 9
PRNTLIN2 MOVE.L (A7)+,A4
LEA TOSBLK,AQ *_0AD I0S PARAMETER BLOCK
TRAP #2 *EXECUTE TRAP #2
JMP (A4)
I0SBLK  DC.B g *PARAMETER BLOCK START
pC.B 2
BC.W 8
, DC.B 1]
bBC.B 6
| DC.L 1]
| DC.L  MSGBEG
DC.L MSGEND
DC.L 0
DC.L 0 *PARAMETER BLOCK END
MSGBEG DC.B ‘THIS ASSBMBLER ROUTINE °
DC.W  $ODOA
: DC.B 'PRINTS LINE TWO.®
DC.K  $ODOA
MSGEND EQU *.]
END

FIGURE 2-4. Assembler Source Routine ASMRTN.SA

2-8




HOTOROLA MEB000 ASM VERSION x.xx FIX : 212. ASMRTN .SA 05/23/83 11:51:21

1 CALLMOD IDNT 0,0 *SUBROUTINE FOR PASCAL CALL
2 XDEF PRNTLIN2

3 00000009 SECTION 9 *pASCAL REQUIRES ASSEMBLY INTO 9
4 9 00000000 285F PRNTLIN2 MOVE.L  (A7)+,Ad

5 9 00000002 41F90000000C LEA 10SBLK, A0 *[0AD 10S PARAMETER BLCCK
6 9 00000008 4E42 TRAP  #2 *EXECUTE TRAP #2

7 9 0000000A 4ED4 JMP (A4)

8 9 0000000C 00 I0SBLK DC.B 0O *PARAMETER BLOCK START

9 9 00000000 02 0C.B 2

10 9 0000OQOE 0008 DC.W 8

11 9 00000010 00 DE.8 0

12 9 00000011 06 DC.B 6

13 9 00000012 0000 DC.N O

14 9 00000014 00000000 .. O

15 9 00000018 00000028 DC.L  MSGBEG

16 9 0000001C 00000053 DC.L  MSGEND

17 9 00000020 00000000 C.L 0

18 9 00000024 00000000 .k O *PARAMETER BLOCK END

19 9 00000028 544849532041 MSGBEG  DC.B 'THIS ASSEMBLER ROUTINE
20 9 00000040 ODOA DC.W  $ODOA

21 9 00000042 5052494E5453 DC.B 'PRINTS LINE TWO.®

22 9 00000052 ODOA DC.K  $ODOA

239 00000053  MSGEND EQU .1
24 END

wwwawx TOTAL ERRORS 0--

akdwd TOTAL WARNINGS {1228
SYMBOL TABLE LISTING

SYMBOL NAME SECT VALUE CROSS-REF (LINE MUMBERS)
I0SBLK 9 0000000C -8 5
MSGBEG 9 00000028 -19 15
MSGEND 9 00000053 =23 i6
PRNTL IN2 XDEF 9 00000000 -4 -2

FIGURE 2-5. Listing from Assembly of ASMRIN.SA







2.3.3.2 PASCAL - Transforming a Pascal Source Program into a Relocatable
Module. The output Of any of the high-level language compilers available for
VERSAEdos systems can be a relocatable object code file of the same format as a
relocatable object file produced by the assembler. This permits modules to be
independently developed by programmers working in various source languages.
Libraries can then be created from the debugged modules for use at linkage time,
as shown in the software development process diagram.

Although ASM and LINK are supplied with VERSAdos, the Pascal compiler is an
opticual product which must be purchased separately.

Figure 2-6 is an example Pascal source program; Figure 2-7 is the listing
obtained from executing the command lines:

a. PASCAL PASCPROG (first compiler pass)
b. PASCAL2 PASCPROG (final compiler pass)

The optional command POPTIM PASCPROG might have been given after the first
compiler pass to generate the most efficient code in the final linked program.

PROGRRM PASCPROG (INPUT,CUTPUT) ;

PROCEDURE PRNTLIN2; FORWARD;

BEGIN;

WRITELN('THIS PASCAL PROGRAM PRINTS LINE ONE');
WRITELN('THEN CALLS PRNTLIN2 TO PRINT LINE TWO.'‘);
PRNTLINZ;

END.

FIGURE 2-6. Pascal Source Program PASCPROG.SA

Line Loc Lev BE Motorola Pascal x.xx PASCPROG.SA 08/23/83 14:37:09

1( -16) 0)-— PROGRAM PASCPROG (INPUT,OUTPUT);
2( 0) 1)-- PROCEDURE PRNTLIN2; FORWARD;
*kkk PRNTLIN2Z Assumed external
1 0)A- BEGIN;
2 0)-- WRITELN('THIS PASCAL PROGRAM PRINTS LINE ONE');
3 0)-- WRITELN('THEN CALLS PRNTLIN2Z TO PRINT LINE TWO.');
4 Q)-— PRNILINZ;
0)-A END.

=i O\ L

#%%% No Error(s) and No Warning(s) detected
#x%® 7 Lines 1 Procedures

#kk% 73 Poode instructions

FIGURE 2-7. Listing from Compilation of PASCPROG.SA

2-10







2.3.3.3 LINK - Binding Relocatable Modules to Memory. After the relocatable
modules required for a function have been wri ten, it is necessary to collect
them together into a single relocatable module. All references between modules
must be resolved and logical addresses assigned. This is the task of the
linkage editor.

Relocatable modules for linking can be drawn from those created by assembly or
compilation, or they can be drawn from a library. Libraries of relocatable
modules are built through use of the Library utility (LIB). Relocatable moduies
can also be created by the linkage editor. These are usually large modules
built from several smaller modules.

Figure 2-8 is a listing that was obtained by linking the relocatable module
TESTPROG.RO (derived from the assembler source program TESTPROG.SA) with the
relocatable module ASMRTN.RO (derived from the assembler source subroutine
ASMRTN.SA). The listing shows that a load module PRINT2.LO, comprising two
mamory management unit (MMU) segments, was created. In its default mode (no
user commands are issued following invocation), the 1linkage editor places
sections having numbers 0 through 7 in the first seoment, SEGO. Other numbered
sections, if any, are placed in the second segmen’:, SEGl. In this case, the
called module CALIMOD was assembled into section 9, as the Pascal compiler
requires, so that the same module can be called from both an assembler and, in
the next example, a Pascal program. Consequently, the linkage editor placed
section 9 in SEGI.

Figure 2-9 is a listing that was obtained by linking the relocatable module
ASMRTN.RO (from the previous example) with the relocatable module PASCPROG.RO
(Gerived from the Pascal source program PASCPRCG.5A). Here the load module
PRNTLINS.LO also comprises two segments. Now, however, since no sections
numbered 7 or below exist, the first segment is SEGl, which the linkage editor
identifies as a read-only segment (as it did in the example of Figure 2-8).
Note that section 8 contains the Pascal runtime package. Section 8 is not
written to and was therefore included in the read-only segment SEGl. Section
15, however, contains the Pascal stack area and was consequently placed in a
read/write segment, SEG2.

Figure 2-10 shows the display obtained when PRNTLINS.LO is executed. This
simple program demonstrates an assembler routine being called from a Pascal
program. A Pascal routine or program could be called from an assembler program;
however, the assembler program would have to supply the necessary portions of
the Pascal runtime package and initialization procedures.

2-11




Motorola M68000 Linkage Editor Version x.xx 05/24/83 12:57:21 Page 1

COMMAND LINE

LINK TESTPROG/ASMRTN,PRINT2,PRINT2;HIMDS

Options in Effect: -A -B,D,H,I,-L,M,0,P,-Q,-R,S,-U,-W,-X
User Commands: None

Object Module Header Information:

Module Ver Rev Language Date Time Creation File Name

MAINMOD 1 1 Assembly 02/23/82 13:28:47 FIX:212. .TESTPROG.SA
“MAIN TEST PROGRAM

CALLMOD 0 0 Assembly 02/23/82 13:29:12 FIX:212. ASMRTN.SA
*SUBROUTINE FOR PASCAL CALL

Load Map:

Segment SEGO: 00000000 000001FF 0,1,2,3,4,5,6,7

Module S T Start End Externally Defined Symbols

MAINMOD 0 00000000 00000017 START 00000000

MAINMOD 1 00000018 00000103

Segment SEGI(R): 00000200 000002FF 8,9,10,11,12,13,14

Module S T Start End Externally Defined Symbols

CALLMOD 9 00000200 00000253 PRNTLINZ 00090200

Unresclved References: None
Maltiply Defined Symbols: None

Lengths (in bytes):

Segment Hex Decimal
SEGO 00000200 512
SEG1 60000100 256
Tota’ lLength 00000300 768
No Errors
No Warnings

Load module has been created

FIGURE 2-8. Listing Obtained by Linking TESTPROG.RO with ASMRTN.RO

2-12




Motorola M6800u Linkage Bditor Version x.xx 05/24/83 15:14:48

Command Line:

LINK PASCPROG/ASMRTN,PRNTLINS,PRNTLINS ;IMD

Options in Effect:

-A,-B,D,-H,I,-L,M,O,P,—Q,—R,—S,-—U,-h’,-X

User Commands: None

Segment SEGI{R): CO0C0000 O000LOFF 8,9,10,11,12,13,14
Externally Defined Symbols

End

00000379
00000459

0000053F
000005BF
000005E5
00000601
000007F 3
000008AS
00000525
00000947
00000979
00000CFB
00000015
00000073
000C0DCF
0C000DDF
00000E29
00000E8D
0000CESF
00000EB3
00000ED7
000COEE7
00000F19
00000F41
00000F6B
00000F95
00000F97
00001057
000010AB

end

Load Map:
Module S T Start
IRIT 8 00600000
TRAPS 8 00000374
OPTION 8 00000454
CLSCOD 8 00000540
ALSTS 8 000005C0
CLO 8 000005E6
IFD 8 00000602
RST 8 000007F4
RUT 8 000008A6
ACCPER 8 00000926
CALCLY 8 00000948
EDTFIL 8 000003 7A
PRGBUF 8 000COCFC
STDFLY 8 00000D16
DFLY 8 00000074
KLKN 8 00000DD0
WRSWRY 8 0000CODEC
WRTRUF 8 00000E2A
LBLKS 8 00000ESE
IHPTR 8 00000EAD
ASGNF 8 00000EB4
BUFSZ 8 00000ED8
CLOSE 8 00000EES
CFLDAD 8 00000F 14
FLSCHN 8 00000F42
LbC 8 00C00F6C
FINIT 8 C 00000F96
PASCPROG 9 00000F98
CALLMOD 9 00001058
Segment SEGZ2: 00001100 0000Zarr 15
Module S T Start
FIGURE 2-9.

«PLJSR
-PADDRER
«PVCHKI
«PYTRAPE
-PY¥ZDIV
-POPTION
-PCLSCOD
«PALSTS
.PCLO
«PIFD
«PRST
«PRUT
«PACCPER
-PCALCLU
<PEDTFIL
«PPRGBUF
«PSTOFLT
«PBFLY
«PHLK
«PWRS

- PHRTBUF
«PLBLKS
-PIWPIR
- PASGNF
«PBUFSZ
«PCLOSE
-PCFLDAD
«PFLSCHN
«PLDCS

-PMAIN
PRNTLINZ

00000372
00000442
00000412
0000037A
000003E2
0000045A
00000540
000005C0
000005E6
00000602
000007F4
000008A6
00000926
00000948
0000097A
00000CFC
00000016
00000074
00000DD0
000GODEA
00000E2A
0000CESE
00000EAD
00000EB4
00000EDS
CO000LES
00COOF 1A
0000CF42
00000F6C

00000F98
00001058

«PVBUSER
«PVTRAPD
<PVTRAPY

- PHRY

-PCLOSPL

-PLDCY

Externally Defined Symbols

Page 1

0000042A
00000412
000003FA

00000DEQ

00000F08

00CO0F70

Listing Obtained by Linking PASCPROG.RO with ASMRTN.RO

(Sheet 1 of 2;

2-13




Motorola M68000 Linkage BEditor Version x.xx 05/24/83 Page 2

PASCPROG 18 00001100 0O00024FF .PZMAIN  000024FE
Unresolved References: None

Multiply Defined Symbols: None

Lengths (in bytes):

Segment Hex Decimal
SEGL 00601190 4352
SEG2 00001400 8120
Total Length 00002500 9472
Ko Errors
2 Warnings

** Warning 709 - Unable to include in debug file: FIX:0212.&.PASCPROG.RS
** Warning 709 - Unable to include in debug file: FIX:0000.&.PASCALIB.RS

Load module has been created.

NOTE

Pascal symbols (i.e., variables, procedure or function names) can
not be accessed by S¥Mbug; hence, the linkage editor supplies a
warning when the D option is specified on the LINK command line.

FIGURE 2-9. Listing CObtained by Linking PASCPROG.RO with ASMRIN.RO
{Sheet 2 of 2)

THIS PASCAL PROGRAM PRINTS LINE ONE
THEN CALLS PRNTLINZ 70 PRINT LINE TWO.
THIS ASSEMBLER ROUTINE PRINTS LINE TWO.

PIGURE 2-10. Display Resulting from Execution of PRNTLINS.LO

2-14







2.3.4 Debugging a Load Module

A load module often reguires debugging to overcome deficiencies which come to
light when the program runs in an actual application. Supplied with VERSAdos
are two debug monitor programs -- DEbug and S¥Mbug. In addition to these, a
firmsare-resident debug monitor program is supplied with each system as
follows: EXORmacs systems come with MACSbug, WMC 68/2 systems with YMChug, and
VME/10 systems with TENbug. WMEbug and VERSAbug are available for MVME110-based
and VM0l/VM02-based systems, respectively, in ROM or as source and object code
on disk.

DEbug - The monitor DEbug is a multiuser, multitasking program running
under VERSAdos that requires references to the actval memory
locations assigned by the linkage editor (for EXORmacs and the
WME/10, the absolute locations of module segments are determined by
the Memory Management Unit (MMU)).

SyMbug - The S¥Mbug program is also a maltiuser, multitasking program
running under VERSAdos, but it permits symbolic references tO
memory locations. This powerful capability relieves the user from
the difficult chore of calculating offsets from a current linkage
editor load map, such as that in Figure 2-8.

To utilize the symbolic referencing capability of SiMbug, a relocatable symbol
file (.RS extension) is created during assembly by specifying the D option. The
.RS file is then changed into a debug file (.DB extension) during linking by
specifying the D option. This debug file is in optirized form to increase the
symbolic referencing speed of SiMbug.

At present, the Pascal compiler does not provide the option of creating a
relocatable symbol (.RS) file for input to the linkage editor. Therefore, the
symbolic referencing capabilities of SYMbug cannot be used to access a point in
a compiled module represented by a label in the source file. However, provided
the D option was set during assembly and linkage, symbolic referencing can be
used to access symbolic locations within assembled modules of a load module.
Access to relative offsets within compiled modules is also provided.

Referencing the previous assembly and linkage eximples, if SyMbug were now
called with the command line

SYMBUG PRNTLINS

the symbols within ASMRTN.RO (see Figure 2-3) could be referenced by name.
Refer to the M68000 Family S¥Mbug/DEbug Monitors Reference Manual, M68KSYMBUG,
for more information on SiMbug's symbolic referencing and other capabilities.

W—Mmitormgdo%mtnmmzmsm. but runs only in
the single-user mode and requires references to absolute memory
locations. MACSbug is used for debugging a new or inoperative
operating system.

WiCbug - The WIC 68/2 monitor, WiCbug, like MACSbug for EXORmacs, does not
run under VERSAdos. It is used for debugging a new oOr
inoperative operating system. It runs in single-user mode and
requires references to absolute memory locations.

2=15




OFTEN-USED
UTILITIES




E>

TENbug - TONbug is a firmware-resident debug monitor for the VME/10 system
which, like MACSbug and VMChug, does not run under VERSAdos. It
runs in single-user mode only and requires references to absolute
memory loctions. It also includes a self-test capability which
verifies the integrity of the VME/10.

WEbug - VMEbug is a firmware-resident debug monitor for MUMEL10-based
systems which, like the monitors described above, does not run
under VERSAdos. It is also available on disk as a package of
source and object modules that will run as a stand-alone moni tor
for specific aplications. it includes an up/downline load
command for loading programs from a host, an
assembler/disassembler for use in scanning and patching the code
being debugged, and a self-test capability which verifies the
integrity of the MVWELLD.

VERSAbug - VERSAbug is a minimum function firmware-resident debugging
monitor for VMOl/VM02-based systems. It does not run under
VERSAdos but, like VMEbug, VERSAbug is also available in source
axﬂobjectcodeondisksothatitcanbemnasastarﬂ-alme
monitor.

Documentation for these monitors is listed in paragraph 2.1.1 of this manual.

2.4 OFTEN-USED UTILITIES

This section offers a shorthand look at utilities often used during program
development. A brief description is provided and an example shown in which
defsult values are taken for some command line fields. Full descriptions of all
utilities are provided in Chapter 4. The following examples assume the session
was initiated by a user other than user 0.

2.4.1 INIT - Initializing a Disk

A hard disk or a diskette must be initialized by msans of the INIT utility.
Hard disks and double-sided diskettes must also be formatted, using INIT, to
provide magnetic sector locating murks for use by the disk drive interface
electronics. Single-sided diskettas usually do not require formatting.

When callad, INIT enters the interactive mode and requests approval to
initialize and format. INIT requests a volume ID, a user number, and a
20-character description which will be given to the dick during erecution. The
latter cepability permits INIT to he used to change ownership of a disk. INIT
also writes the configuration information on the disk.

1f the initializer is user 0, other information is requested according to
whether the disk to be initialized is a hard disk or a floppy diskette.

he following command lines will start initialization of a floppy diskette and a
hard disk, respectively:

INIT $FDOL (diskette) INI'T $HDOL1 (hard disk)
in the above, #FD0L and $#HDOL are the device names of the drives on which the
disks are mounted.

2-16







2.4.2 DIR - Directory Display

The DIR utility offers a quick means of displaying the volume ID, user number,
catalog name, file name, and extension fields for each user-owned file which is
stored on the specified volume. The utility uses the default value for each
empty file descriptor field on the command line. Thus, specifying DIR alone
results in the least selectivity. Increasing selectivity comes with each field
entry. Entries in all fields would return a single file descriptor.

when volume ID, catalog name, and user number are not specified on the command
line, the utility assumes the user default volume ID, user number, and catalog
name, making it possible to obtain directory information with abbreviated
entries on the command line. Thus, the command lines

DIR FILNAM.* and DIR *.5a

will show all extensions of FILMAM and all files of .SA extension, respectively,
on the user default volume and within the default catalog.

The DIR utility can also be used to display the volume name, user number, and
description of a disk or diskette in a drive.

2.4.3 LIST - ASCII File Display )

The LIST utility is used to view the contents of an ASCII file. Scroll of the
display can be stopped by simultaneous use of the CIRL and W keys, and can be
restarted by pressing any key. Since the function must always find a single
file, values are required for all five file descriptor fields. If values are
not specified for any of the volume ID, user mumber, -~r catalog name fields,
user default values are assumed by the utility. If the extension field is
omitted, .SA is assuned. Output of the LIST utility can be formatted and can be
directed to the system printer; otherwise, the contents of the file will be
displayed on the terminal.

Execution of the command line
LIST FILENAM

will cause display of the specified file (extension .SA is assumed) if the file
belongs to the default user and it exists within the user default catalog on the

- user default volume.

The DUMP utility must be used to display files of cbject code such as .RO and
L0 files since these are not ASCII files.

2.4.4 COPY - Copying Files

The COPY utility permits files of any extension to be reproduced on the same or
another voluwe. BAny of the five file descriptor fields can be changed by
specifying the desired form of that field in the command line output field. The
COPY utility alsc allows the asterisk ("wildcard™) to be specified to represent
a field(s) or a character(s) im the input field and/or the output field.
Variations in COPY execution are provided by options which allow verification of
the requested copy or permit one file to be appended to another.

COPY CLDWNEM .Sk, NEWNMM .SA;B
2=-17






If OLDNAM.SA in the above command line belongs to the default user, execution of
the command will cause the file to be copied into the user default catalog and
volume and given the same user numwber but the name and extension NEWNAM.SA. The
B option causes comparison of the copied file with the criginal, and display of
differences, if any.

The deleting of unwanted files is handled by the DEL utility. DEL removes file
entries from a disk directory and frees any space allocated to the corresponding
files. Deletion of groups of files having common file descriptor attributes is
accomplished by using the asterisk ("wildcard") in the catalog name, file name,
or extension fields. Group deletion can proceed file-by-file in response to a
prawpt, or automatically by specifying the Y option.

DEL CAT1.*.LO;¥

The above command will automatically delete all files of .LO extension belonging
to the default user, within catalog CAT1, and on the user default volume.

As a precaution, a DIR should be performed on a group of files before a
"wildcard®™ delete is reguested.

2.4.6 BACKUP - Creating Working Disks

The BACKUP utility is used to create working copies of system disks, as a
periodic data preservation tool for system administration, and to create or
modify disks of development programs. BACKUP permits files to be transferred
between source and destination disks whether the disks are hard or floppies and
of the same or different capacities. Information in the descriptors of
transferred files can be changed, and disk Volume Information Block (VID) data
can be altered. BACKUP also permits track-to-track data transfer and will
perform verification and disk data comparison and reporting in the latter mode.

Unused intra-file and inter-file space can be regained on the destination disk,
and selection of files from the source disk can range from the entire disk down
to a single file. The selection process can proteed automatically or
interactively through dialog with the utility.

To properly utilize the variation in the two operating modes and take advantage
of the many file selection provisions of BACKUP, the user should familiarize
himself with the Chapter 4 description of this utility.

The minimum command line is:
BACKUP

Execution of this line selects the two lowest mumbered disk drive device names
in the system tables -- usually #HDOO and #HDOl for a hard disk system, #FDOC
and $FD01 for a system with an FDC and no hard disks, or #FD04 and #FDO5 for a
system with a UDC and no hard disks. The default operating mode is entered
(file transfer, A option if hard disks or track-by-track, U option if floppy
disks). In a floppy disk system, the utility prompts the user for a new volume

2-18



ID and description, after which the source data is transferred track-by-track to
the destination. In a hard disk system, the user is prompted to choose transfer
of all or selected files. If "all files"™ 1is chosen, transfer proceeds
automatically unless a duplicate name is encountered on the destination, in
which case a prompt then asks for an OK to overwrite before proceeding. If
"selected files™ is chosen, the user may select categories of files to be

copied.

2-19/2-20




- CHAPTER 3
- SESSION
j CONTROL




CHAPTER 3

VERSAdos SESSION CONTROL

3.1 INTRODUCTION

Session control commands are commands made directly to VERSAdos, rather than
being loaded as separate programs. They modify the operation of VERSAGos or of
a user command, and are made available to the user when the session control task
is established at session initiation (logon). The foliowing commands are
included in the universal session control category.

Command characters to the left of the line are required; thcse to the right are
allowed, but are not required. Lowercase letters are allowed. All commands
mist terminate with one or more spaces Or a carriage return if no arguments are
required for the command. Therefore, a space or carriage return can be entered
in lieu of any allowable character shown on the right-hand side of the line.
Entry of any other character in that position causes szssion control to assume a
file name is being entered. For example:

ASSI<gpace> =) gession control command

ASSI. => file name (.LO extent assumed)
ASSIS =» file name (.LO extent assumed)
ASSIG =)> gession control command
Cormand Description
OFF Terminate session. '
LOG OFI|F Terminate session. } IDENTICAL SESSION TERMINATION
LOGOF|F Terminate session.
BYE Terminate session.
BATC{H Submit batch job.
CANC| EL Cancel selected or =11 batch jobs.
ELIM| INATE Cancel all batch jobs (privileged).
QUER|Y Request status of batch job.
CHAL|N Execute chain file.
RETR|Y Restart execution of aborted chain file at current record.
PROC Restart execution of aborted chain file at next record.
OPT| ION Set chain conditional processing option.
R? Display contents of chain conditional processing pseudo
registers.
ERD Terminate chain processing.
LOBRD Call the loader.
STAR|T Begin execution of user task.
CONT | INUE Restart execution of user task.
STOP Stop execution of user task.
TERM| INATE Terminate execution of user task.
BSTO|P Stop all tasks on Break.
BTER |M Terminate all tasks on Break.
USE Enter file descriptor defaults.
DEF | AULTS Display default values.
ARG| UMENTS Enter/display new arguments.
NOARG | UMENTS Clear argument list.
DATE Display time and date or (privileged) change date.
TIME Display time and date or (privileged) change time.

Place the session control task in the dormant state.

31




SESSION
- CONTROL

COMMANDS

l
'
1

i
|
'BATCH MODE
| PROCESSING




-

PASS|WORD Specify or change user password.
SWORD Specify or change system security word (privileged).
SECURE Specify level of system security (privileged).

In the preceding commands, the character """ correspcads to the ASCII
hexadecimal code S5E, and ¥?" corresponds to ASCII hexadecimal code 3F.
"privileged"™ means that only the system administrator, user 0, may use this
command .

3.2 SESSION CONTROL COMMANDS
3.2.1 Batch Mode Proccssing

The facility which allows a user to operate in the online or foreground mode
while his job is being processed in the background mode is called batch mode
processing. Although the batch job is processed concurrently with foreground,
it operates under a lower priority of access to system resources. A structure
comprised of several session control commands offers the means by which a user
interfaces with the subsystem. This structure can be excluded from or included
into the system at SYSGEN time. The commands are:

a. BATCH (submit)

b. QUERY (status)

c. CANCEL (job in queue or process)

d. ELIMINATE (all jobs in queue or process for specified user)

Argument substituticn is in effect during batch processing.

Job Queueing

The batch facility allows multiple users to regquest execution of multiple jobs,
thus placing the decision of which to do first on the operating system. A
circular gueue established in RAM is used to allow the dispatch of jobs in entry
order.

Job queue length may be increased by a multiple of 32, chosen when the user
initialiy generates his application operating system. &s supplied, VERSAdos
allows 25 batch jobs to be queued without regard to the mumber of online users.
Because jobs are queued with reference to user mumber and remain queued when the
user signs off, he can later initiate a new session and determine the status of
and/or terminate any previously entered batch jobs through use of the QUERY and
CBNCEL functions of the subsystem. Where several users are sharing the same
user number, the status of any job gueued under that number is accessible. In
addition, any queued job can be cancelled by any user with the same user number
or by the system administrator (user 0).

Job Dispatching

As stated, jobs are dispatched in the order queved. The maximum nurwber that can
be processed concurrently is established by the user at system generation time
(i.e., when the user initially implements his operating system) or dynamically
with the DISPATCH utility.

Execution of the dispatch cycle takes place upon the queuveing or termination of
a batch job.







The system administrator has the capability of putting a hold on the dispatching
of any new jcbs, and of releasing the hold.

OnlinesBatch Processing Differences

The basic differences between online and batch processing are charted as

follows:

Circunstance Online Processing Mode Batch Processing Mode

Command input Manual via terminal or Command file via BATCH

method. comand file via CHAIN cormmand .

command .

Insufficient memory 1. Message displayed. 1. Message displayed.

space to load

program. 2. PROMPT (=) returned. 2. A lé-second delay

’ (User may issue QUERY begun*.
and CANCEL commands.)
3. Time-out initiates new
attempt to load (256
attempts) .
*As supplied. Period may be changed by user at system generation time.
3.2.1.1 Batch Command Syntax (BATCH) BATC

BATC[H] <cdf>,[<1df>1[ <arg 1>,...<arg n>]

where:

cdf

lag

arg 1,. ..a;rg n

Is the descriptor of a command (chain) file (minimum of
file name field required; if an extension is not specified,
.CF will be supplied). A device is not allowed. <cdf> is
assigned as public read only.

is a file descriptor or device name. The file name
specified need not exist but will be allocated and assigned
as <1df>.SA. <1d4f> is assigned as write. The system
printer (#PR), #NULL (no message printedj, or #CNxx (where
xx is another terminalj} may be specified. If the <1df>
field is omitted, PR is assumed.

Is the argument list for substitution in the chain file.
May be preceded by one or more spaces.

BATCH Command Example

=BATCH DEMO.CF,#PR

ss88: QUEUED (or BATCH Q FULL)

where ssss represents the session number.

3-3




QUERY

CANCEL




QUER

3.2.1.2 Batch Job Status (QUERY). After being input to the system through use
of the BATCH command, & job can exist in only one of three states: waiting for
execution (gueued); executing (rumning); or completed (done), which includes
terminated, aborted, or cancelled. The status of any job can be determined
through use of the QUERY command -— in particular, the status of the last job
submitted, a specific job (by session number), or all jobs submitted by one user
(by number of the current session user). The system administrator, user number
= (, can request the status of the total batch queue. The status of a job is
retained until the circular queue is filled and it, as the oldest status, is
overwritten when an additional job is submitted. Following are the query
command forms.

QUERY Command Forms

QUER[Y] Obtains the status of the last job submitted. If no
batch jobs have been submitted during the current
session, the command defaults to all batch jobs for the
user number of the current session.

QUER[Y] <ssss> Obtains the status ot the Jjob with session number
{SSSS>.
QUER[Y] ALL Cbtains the status of all Jjobs submitted by the user

number of the current session. If the user number of
the current session is 0, the status of all jobs is
returned.

CANC

3.2.1.3 Discontinuation of Batch Job (CANCEL). After submission to the system,
a job can be cancelled (unless already completed) through use of the CANCEL
command. Therefore, it is the usual practice to obtain the status of the job or
jobs by using the QUERY command prior to the termination of a session. In
particular, the user can cancel the last Job submitted during the current
session, a specific job (by session number), or all jobs submitted by one user
(by current session user number). The system administrator, user number = 0,
can cancel all batch jobs; therefore, he should cancel with care. The status ot
the cancelled job is returned.

CBNCEL Command Forms

CANC{EL] Cancels the job last submitted.
CANC[EL] <{ssss> Cancels the job with session number <ssss>.
CANCIEL] ALL Cancels all jobs submitted by the user number of the

current session. If the user number of the current
session is 0, all jobs are cancelled.

3-4







ELIM

3.2.1.4 Cancel Batch Jobs (ELIMINATE). The ELIMINATE command is used by the
system administrator (logon user O only) to cancel all the jobs of a particular
user for the current session.

ELIMINATE Camm’:d Form

ELIM[INATE] <user no.> Cancels all jobs belonging to user mumber specified.

3.2.1.5 Messages - Batch Mode Commands. Useofanyofthefwrhatdlmde
commands BATCH, QUERY, CANCEL, or ELIMINATE can result in display of one of the
following messages:

ssss: QUEUED
ssss:  RUNNING
ssss: DONE STATUS=Sxxxx :<messaged>

In these displays, ssss is the session mumber and xxxx is a description of the
status. For example, $xxxx:<message> might be:

|
| EXRMPLES:

$C001: NORMAL TERMINATION FROM RUNNING
¢ CANCELLED WHILE RUNNING
SA006: CANCELLED WAITING IN QUEUE
¢ CANCELLED DUE TO BREAK
SC010: ABORTED DUE TO BUS ERROR
$CO01l: TERMINATED DUE TO ERROR (RDDRESS)

:

Example - Typical Session with Both Online and Batch Job Processing

(ALL CAPS) (key illuminated)

(BREAK) (session requested)

| VERSAdos VERSION: xrr.vw %/xx%/%xx

: ENTER USER NO. =DEMO:1

§ KIXXXX %/xx/xx START SESSION 0002 USER=1
]

=BATC GCD,{#PR (GCD is the name of a chain file. Default
extension .CF is assumed. Error messages will be
printed.)

0003: QUEUED

=BATC QUEENS, §NULL ($NULL causes no messages to be printed.)

0004: QUEUED

=E OLDFILE NEWFILE;S (Online operations may be performed as desired

while waiting for ewecution of batch jobs)

3-5




DISPATCH




ELIM

Example - Typical Session with Both Online and Batch Job Processing (cont'd)

=QUER 0003
0003: DONE STATUS $C001: NORMAL TERMINATION FROM RUNNIKG
(Code $C001 indicates 2 normal termination

following successful completion of the job.)

=QUER 0004
0004: QUEUED
=CANC 0004
0004: DONE STATUS Sa006: CANCELLED WAITING IN QUEUE
= (Code $A006 indicates that the job was cancelled

before execution.)

NOTE

In the QUERY command, leading zeros do not have to be entered.

DISPATCH

3.2.1.6 Hold or Release Mew Batch Jobs (DISPATCH). DISPATCH is not a session
control command, but a utility program. It is inciuded in this section due to
jts related function. The DISPATCH utility allows the system administrator
(only) to change dynamically the number of batch jobs that are able to execute.
With this command, a hold can be put on the dispatching of any new jobs, and it
can then be used to resume dispatching. (Jobs already rumning are not affected
by this command.)

DISPATCH Command Form

DISPATCH [<number of jobs>]

where <number of jobs> is the number of jobs concurrently executing/waiting
(maximum = 8, a greater than practical limit). Specifying a 0 as <nurxber of
jobs> prevents any jobs in the queue from executing until restarted with another
DISPATCH command. Specifying DISPATCH without the argument <number of jobs>
sets its value to the <number of jobs> established when the system was SYSGENed.




CHAIN MODE
- PROCESSING
 (CHAIN)




3.2.2 Chain Mode Processing (CHAIN) CHAI

Chain mode processing allows predefined procedures to be automatically executed.
A procedure consists of any Sequence of VERSAdos command lines and subcommands
or task entries as required by the command and which are stored in a file. Such
a procedure or chain file is normally given the file extension .CF. The CHAIN
mode commands can be excluded from or included into the system at SYSGEN time.

When a chain file is invoked, the connection between logical unit 5 and the
terminal 1is closed. The chain file is then assigned to logical unit 5.
Subsequerit commaénds are read from logical unit 5 (chain file). For a brief
description of logical unit usage, see the description of the ASSIGN session
control command in this manual.

Leading spaces are permitted and are ignored tor command decode purposes. This
allows indenting to indicate levels of nested conditional commands. Only those
commands preceded by an "=" as the first character following the permissible
leading spaces are treated as commands. Those without an "=" are assumed to be
subcommands following a command, and are ignored.

Argument (parameter) substitution is in etfect during chain file processing. A
new argument list may be entered at the time the chain processing 1is initiated,
or an existing argument list will be used. Refer to paragraph 3.2.3 for further
discussion of argument substitution.

Three pseudo registers are provided to test and manipulate data during chain
tile processing, thus providing conditional processing capability. Each of the
pseudo registers is a 16-bit data item in the data segment of the session
control task. These pseudo registers are updated or changed only during chain
file processing. Normally, all three are cleared to zero when chain file
processing is initiated; optionally, however, they may be left with the previous
contents.

The RA, or abort code pseudo register, receives the lower half ot the A0
register when a user task terminates or aborts. When a user task terminates
normally, the A0 register should be zero; hence, the RA pseudo register will
normally be zero if the user task terminates. When a user task aborts, the
abort code is in the lower half of the A0Q register and will be transferred to
the RA pseudo register. The RA register may be used as a general purpose
registe.s tor data manipulation between user task invocations.

The RD, or diagnostic pseudo register, is used to retain status of the progress
of the chain file processing. When a user task terminates or aborts, the
terminate or abort TRAP #1 directive number is in the lower half of the DO
register. The upper half of the D0 register is used to convey diagnostic
information which is used in chain file processing to determine whether to
proceed. The upper half of the DO register is inclusively OR'ed with the RD
pseudo register. If the RD bit 15 is set, a flag is set to cause aborting the
chain file processing. Current implementation of the Pascal system (compiler,
assembler, linkage editor) puts zero (no errors), $C000+no. of errors, or
$1000+nc. of warnings in the upper half of DO on termination or abort; hence,
errors will cause an abort of chain file processing. When a user task is loaded
and started during chain tile processing, bits 15 and 0-11 of the RD register
are reset to zero; thus, bite 14-12 reflect the retained severity of faults
during the chain tile processing.




CHAI

The RX pseudo register is a general purpose register completely at the user's
discretion. "FOR" loops normally use the RX pseudo register for maintaining the
loop count but, optionally, an internal counter may be used instead of the RX
pseudo register. A powerful use of the RX pseudo register is to use the
indirect form of argument addressing, \(RX), especially in "FOR" loops.

Several of the OPTION utility letters paragraph 3.2.11) are used in chain file
processing, as follows:

A Abort chain file processing if a user task terminates or aborts with
the lower half of A0 <> 0.

L List chain file commands which are executed (not conditionally
skipped) .

M List chain file commands conditionally skipped (with a "\" substituted
for the "=").

N No echo of chain file ccmmands (overrides L & M) .
0 Override errors; i.e., continue c¢hain file processing under the
following error conditions:

we.ride? Error condition

yes "ER: xxxx" error messages

yes User task terminates/aborts with DO bit 31 set (RD bit 15)
yes OPT A and lower AQ <> 0

no =/ABT command

no Chain file return nesting errors

no Argument substitution table overflow

no Command syntax errors

when chain file processing is interrupted due to one of the above errors, the
chain file remains assigned to logical unit 5. Interactive dialog with the
terminal is continued through logical unit 0 (privileged connection for session
management) . The CHAIN ABORTED notice is output, as well as the contents of the
pseudo registers. Interactive dialog prompt in the chain aborted mode is
"(CHAIN)=". If the cause of the error can be remedied, chain file processing
may be resumed with a PROCEED or RETRY command. Other possible actions include:

a. [G]JEND or CLOSE 5 (Terminal input to terminate chain mode.)
b. [@]CHAIN xxx or [@]xxx.CF (Start new or same processing.)

Cc. <session control commands>

d. <utility commands> (Except an edit to the chain file, because

of access permission restrictions.)

NOTE

RETRY and PROCEFD are not applicable if chain processing was
aborted as the result of opening the door of the diskette drive
containing the chain file. In this case, the error message
“$100000EB FROM USR ** DEVICE STATUS CHANGED" appeats.

A chain file may be terminated in the following ways:

a. =[@]1END statement in the chain file.

b. [@]END or CLOS 5 terminal input to a "(CHAIN)=" prompt.
c. An "end of file" return when attempting to read a command.
d. & new chain file is invoked with "CHAIN xxx" or "xxx.CF".

3-8




CHAL

3.2.2.1 Invoking Chain Mode Processing.

CHAIN Command Syntax

[@ICHAI[N] <cdf> [<argl>[,....<argn>]]
or

[@1<cdE>.CF  [<argl>[,...,<argn>]]

where:
cdf Is the file descriptor of the chain file. If the extension
.CF is explicitly included, the command mnemonic (CHAIN or
CHAI) is superfluous and may be omitted.
[€] Inhibits the clearing of the three pseudo registers RA, RD,

and BX to zero before initiating the chain file processing.
Default is to zero the pseudo registers before initiating
chain file processing.

NOTES: a. An implied ARGUMENTS command may be included on
the command line. One or more spaces must delimit
the file descriptor and the argument list.

b. When the chain file specified cannot be assigned,

an END command is automatically executed and the
chain mode is terminated.

CHAIN Command Example (without argument substitution)

=CHAI DEMOCHN.CF
=ASM DRIVER, ,#PR
=LINK DRIVER,MATHEX,#PR; IXHML=ARITH,A

L1STM (Subcommand)
END (Subcommand)
=END

In this example, when execution of the command line is initiated, the system
gets the ASCII record file DEMOCHN from the default volume. Commands in . . fOCHN
are then sequentially executed. A command line in the file preceded by ¢ - ~gual
sign (=) requires that a task be initiated to execute that line. Sub-command
lines are executed by the task set up by the previous command.

3-9




)
.
g
&
&
i
g

!,

CHAI

CHAIN Command Example (with argument substitution)

=CHAI ARGDEMO.CF GCD,#PR,#NULL,IXMH
=LIST ARGDEMO.CF
PAGE 1 LISTING OF ARGDEMO.CF

=[IST ARGDEMO.CF
=ARG

=PASCAL \l '] ,\2
=PASCAL2 \l 4 1\3
=LINK \1,,\2;\4
=END

END OF FILE

=ARG
\1:GCD
\2:#PR
\3:#NULL
\4 : IXMH

=pPASCAL GCD,,#PR

Motorola Pascal Compiler Phase 1 Version x.xx

Copyr ighted 1982 by Motorola, Inc.

Source Lines Intermediate Code  Errors Warnings

145 828 0 0

=PASCAL2 GCD, ,#NULL

M68000 Pascal Compiler Phase 2 Version x.xx

Copyr ighted 1982 by Motorola, Inc.

Source Lines Intermediate Code Bytes Generated
145 828 2026

No Errors detected.
=LINK GCD, ,$PR; LXMH
M68000 Linkage Editor Version x.xx
Copyrighted 1982 by Motorola, Inc.

=END
END CHAIN

3~10




3.2.2.2 Unconditional Chain Commands.

CHAIN Mode Command (END)

The END command is used to temminate chain mode processing. The END command may
be included in the chain file, preceded by an equal sign, or entered from the
teminal while the system is in the CHAIN ABORTED state.

{@]END(CR) (Terminal entry)

=[@] END (Within chain file)
The @ option causes the closing of all intermediate LUN's used for subroutine
chain file calls, and for FOR loops. It may be used to abort chain file
processing during execution of a nested chain file or inside a FOR loop.

NOTE

If processing is aborted inside a FOR loop or a chain file sub-
routine call, the " (CHAIN ABORTED)=" prompt is issued. If END
is input, only one level of nesting is terminated and several
END inputs may be reguired to receive the END CHAIN message.
If @END is input, all levels of nesting are temminated, and the
END CHAIN message is output.

Display Pseudo Registers

The pseudo registers may be displayed with this command (and they are
automatically displayed if chain file processing is aborted). The response to
this command is output to LU=6.

=/R?

Set Pseudo Register to a Specified Value

=/RA|RD|RX = <value>

where <value> is an integer which may be expressed in 16 bits; is assumed to be
a decimal string; and may be a hex string if preceded by "$".

EXBMPLES:
=/RA = (Clear abort code register)
=/R¥ = \0 {Set RX equal to the current number of arguments)

=/RD = $00FF (Set to a hex value)

3-11




CHAI

Set/Reset Specified Bit in a Pseudo Register

=/RA]RD(RX (<bit nuvber>) = 1[0

where <bit number> must be enclosed in parentheses.

EXAMPLES:

=/RX(0) = 1
=/RX (\2) =0
=/RX (/BITNO=) = 1

(Set bit 0 to a 1)
(Argument positional notation)
(Argument tag notation)

Operation on Pseudo Registers with Literal Values

=/RA|RD|RX = RA|RD|RX <operator> <valuz>

where:
value Is an integer which may be expressed in 16 bits; is assumed
to be a decimal string; and may be a hex string if preceded
by $.
operator May be one of the following:
! = inclusive OR
& = logical AND
+ = arithmetic add
- = arithmetic subtract
EXAMPLES:
=/RX = RX & $FF00 (Mask low order byte)
=/RA = RX & SFF (Transfer low order byte RX to RA)
=/R{ = R{ + 1 (Increment RX by 1)
=/RX = RX | /BITMASK= (Inclusive OR tag notation argument)

Chain File Comment

This command allows the user to document the execution of a chain file.

The use

of comments shows both the progress and the direction of conditional statements

executed.
=/* [<comment>]

EXBMPLES:

a. =/* EXECUTING FOR \0 ARGUMENTS
=/* ARGUMENT 1 = \1
=/% ASSEMBLING THE MODULE \ (RX)

b. =/IF RX(14) = 0
=/% NO ERRORS ASSEMBLING \ (RX) MODULE

=/ENDIF

=/IF RE(12) = 1
=/* WARNINGS ASSEMBLING \ (RX) MCDULE

=/ENDIF

3-12




Chain File Subroutine Call

=/@ <filename>

The effect of this command is to treat a chain file as a subroutine; i.e., the
named <filename> (.CF extension assumed) is executed and then control is
returned to the original chain file at the next command. Nesting of chain file
subroutines is subiject to the restrictions of FOR loops.

The subroutine chain file is not initialized upon entry; i.e., the pseudo
registers are not cleared. The present state of the conditional IF level is
preserved. Upon return to the calling chain file, the IF level must be the same
as when the call was made.

EXAMPLE ¢

=/@ ASMUTIL (A chain file to assemble a program)

=/@ USMUTLNK (Followed by a chain file to link edit the result)
=END

Note that if arguments are passed in a chain file subroutine, they override
those currently in effect. Therefore, existing arguments should be reentered
with those of the subroutine.

Chain File Pause Command

=/& [<comment>]

The effect of this command is to provide a pause until input is received from
the terminal. The command line is printed, an = prompt is printed at the left
margin, and input from the keyboard is required te proceed.

NOTES: a. In batch mode, the command line is printed as a comment, but input
is not solicited.

b. A non-interactive command may be input if preceded by another =
prompt. Interactive commands may produce unpredictable results
since LUN=5 is assigned to the chain file. A command not preceded
by an = prompt is ignored.

c. The chain file processing will procead on a RETURN.

d. The pause for input is subject to input time-out values as
determined by SYSGEN parameters (refer to the System Generation
Facility User's Guide).

Bbort Chain File Processing (ABT)

The Abort command (ABT) interrupts chain file processing to allow the user to
enter commands from the terminal or terminate a batch session. The CHAIN
ABORTED message, the pseudo registers, and (CHAIN) prompt are output. The OPT O
does not override this command.

=/ABT [<comment>] {To continwe chain file execution, the subcommand
PROC must then be entered.)
EXBMPLE:
=/BET ENTER CORRECT ARGUMENTS AND “PROCY
NOTE
RETRY is not applicable following this command.

3-13




CHAL

3.2.2.3 FOR Loop Processing.

Command Syntax
=[@] /FOR a,b

. (User tasks, utilities, other chain file commands, etc.)

=/ENDFOR

The effect of this pair of commands is to process the commands between the /FOR
and /ENDEOR beginning with the value "a“. If the @ option is not used, the "a"
value is put into the RX register. The @ option causes the current value to be
maintained internally; thus, the RX register is available for other user use.
If a<=b, the processing is initiated; otherwise, a "skip" is initiated (next
command executed is that vollowing ENDFOR). When the /ENDEOR is reached, the
a" value is compared to the "b" value. If ad=b, the processing continues
following the /ENDFOR. Otherwise, "a" is incremented by 1 and the leoop is
executed again.

Nesting of FOR loops and chain subroutines are permitted to the extent that
LUN's >=7 are SYSGENed into the operating system and, space permitting, in the
conditional return stack. (The return stack and the argument substitution
pointer table have a floating boundary; the number of levels of nesting possible
decreases inversely proportional to the number of arguments). The following
table shows possible combinations achievable:

MAXLU No. Arguments Nesting Returns
- 79 (all mull) 0
8 67 2 (Standard VERSAdos as delivered)
10 55 4
19 - 13

If an ARGUMENTS command is processed when the nesting level does not permit the
number of arguments to be entered, a "No. ARGUMENTS" error is output and the
nunber of arguments allowable are entered. If the current number of arguments
does not leave room for nesting, an attempt to nest will result in the error
message RETURN STACK SPACE. If an insufficient number of logical units is
SYSGENed, an attempt to nest another level results in the error message NESTING
LEVEL. All of these errors cause the chain processing to abort in the fashion
equivalent to a /ABT (which can not be overridden by option 0).

E{AMPLE:

a. =/FOR 1,\0 (For all arguments)
=/ENDFOR

b. =/FOR 1,4 (Loop executed 4 times)
= /ENDFOR

3-14




CHAIL

3.2.2.4 Conditional Chain File Commands. The conditional chain file commands
provide the capability to test pseudo registers, arguments, and data. Various
portions of the chain file may be executed or skipped, based on the results of
the test. The basic structure consists of:

=/IF {condition>

. (Statements executed if condition is met or true)

=/ENDIF

or the alternative form:
=/IF <condition>

. (Statements executed if condition met)
=/ELSE

. (Statements executed if condition not met)
=/ENDIF

Nesting of up to seven levels of IF's is permitted. Note that failure to
provide an =/ENDIF for each level of =/IF will provide erroneous results. For
debugging of complex chain files, it is suggested that OPT LM be set in order to
verify the path taken.

EXAMPLE: (3 levels of IF's)

=/IF RA = 0
:/IF RD = O
=/IF R{ = 0
=/% ALL PSEUDO REGISTERS = 0
=/ELSE
=/%* RA & RD=0, REL <0
=/ENDIF
=/ELSE
=/IF R{ = 0
=/%#* RA & R{ =0, RDO 0
=/ELSE
=/%* RA = (0, RD& R{ < 0
=/ENDIF
=/ENDLF
=/ELSE
=/IF RD = 0
=/IF R{ = 0
=/%* RD& R =0, RA 0
=/ELSE
”/*RA&RX<> 0' RD =0
=ENDIF
=/ELSE
=s/IF R{ = {
=/%* RA & RD <> 0, RL =0
=/ELSE
=/% ALL, PSEUDO REGISTERS <> 0
=/ENDILF
=/ENDILF
=/ENDIF

3-15




Conditional Testing/Execution with Literal Values

=/IF RA|RD|RX <|<=|>|>=|=|< <value>

EXRMPLE:

=/IF R&a < 0

®

=/ENDIF
Alternative form:

=/ RA <> 0O

=/ENDIF

(RA not equal to 2zero)
(Statements performed if condition met/true)

(End of condition)

(Statements executed if RA not zero)

(Statements performed if RA zero)

Conditional Testing/Execution Based on Pseudo Register Bits

=/IF R (15) = 1

=/ENDIF

or

=/IF R{ (12) = 0

-

=/ELSE

=/ENDIF

(Bit 15 of RX set)

(Statements executed if condition met)

(Bit 12 of RX reset)

(Statements executed if bit 12 reset)

(Statements executed if bit 12 set)

(End of condition)

3-16




Conditional Testing/Execution Based on Expression Consisting of

Logical Operators or Substitution Arguments

Conditional execution may be based on the combination of existing or mull
arguments vusing the logical operators ! (inclusive OR) and & (iogical AND).

=/IFC|IFS <expression> /IFC = clear if argument is undefined (null),

/IFS = set if argument is defined)
EXRMPLES:

=/IFS \l!\2 (If either argument 1 or 2 is not null)

=/IFC \1l&\3 (If both arguments 1 and 3 are null)

=/IFC \INPUT= ! \OUTPUT= (If either tag notation arguments null)

=/IFS \1I\2&\3 {3 required not null and either 1 or 2 must be
present)

Execution if a Specified Argument Matches a Literal String

=/IFEQ "<literal ASCII string>"<argument>

EXAMPLES:
=/IFEQ “"#PR™\3 (Argument position notation)
=/IFEQ “LIST.LS"\LISTING= (Argument tag notation)
=/TIFEQ "04"™\0 (Two digit number of arguments)
=/1FEQ "XXOIX"\ (RX) (Argument indirectly addressed)

NOTES: a. An exact match of the string between the double quotes and the
argument specified is required.

b. No punctuation between the second quote and the argument is allowed.

c. Double quotes within the literal string is not allowed.

Y

NOTE

“Tag notation arguments® and the use of \(RX)
are described in paragraph 3.2.3.

3-17




CHAL
3.2.2.5 BAborted Chain File Restart Commards.

Chain Mode Command (PROCEED)

The PROCEED command allows restart of the aborted execution of a chain file
beginning with the command following the one being executed at the time the
CHAIN ABORTED message was sent. The values of the pseudc registers are not
changed by the PROCEED command.

PROCEED Covmand syntax:

PROC[EED]

Chain Mode Command (RETRY)

The RETRY cammand allows restart of the asborted execution of a chain file at the
beginning of the command which was being executed when the CHAIN ABORTED message
was generated.

RETRY Command syntax:

RETR[Y]

3.2.2.6 Coamposite Chain File Examples.

Chain File Example 1l:

The following chain file will assemble and link a list of files whose file names
are arguments l-n. A composite listing of the assemblies is generated, as well
as a separate composite listing of the link maps. When all of the assemblies
and link edits are complete, the composite listings are output to the link
printer and all listing files are deleted. The use of subroutine chain file
calls is demonstrated. The ASMTSK.CF performs all of the assemblies before
returning, and then LNKTSK.CF performs all of the link edits before returning.

=/% PERFORM ALL OF THE ASSFMBLIES (Message)

=/@ ASMTSK {Chain file subroutine call)

=/* PERFORM ALL OF THE LINK EDITS (Message)

=/@ LNKTSK (Chain file subroatine call)

=/IFS \1 {Conditional test for argument)
=/% CREATE COMPOSITE LISTINGS OF ASSEMBLIES AND LIMNK EDITS (Message)
=/FOR 1,\0 (FOR loop processing, to the number of arguments)
=COPY \ (RX) .LS,ASMLIST.LS;A (Append argument file to ASMLIST.LS)
=COPY \,(RX) .LL,LINKMAP.LL;A (Append argument file to LINKMAP.LL)
=/ENDFOR {End of FOR loop processing)
=/% QUTPUT COMPOSITE LISTINGS TO LINE PRINTER (Message)

=C0PY ASMLIST.LL,#PR (Copy file to printer)

=COPY LINKMAP.LL,#PR {(Copy file to printer)

=/% DELETE ALL OF THE LISTING FILES (Message)

=DEL * ., LS;Y (Delete all files with extension .LS)
=DEL *,LL;Y (Delete all files with extension .LL)

=/ENDIF (End of conditional test)

=/% TOTAL END OF CHAINFILE (Message)

=@END (End, regardless of nesting depth)

3-18




ASMTSK.CF contains the following:

=/* ASSEMBLES THE FILE NAMES IN THE ARGUMENT SUBSTITUTION TABLE (Message)

=/* CAN BE EXECUTED DIRECTLY, OR AS A CHAINFILE SUBROUTINE (Message)
=/FOR 1,\0 (FOR loop processing all arguments)
=AM \ (RX) ,\ (RX) ,\(RX) ;RZ=80 (Assemble file)

=\ENDFOR {End FOR loop processing)

=END (End chain file subroutine)

LNKTSK.CF contains the following:

=/* LINKS THE FILE NAMES IN THE ARGUMENT SUBSTITUTION TABLE (Message)
=/* CAN BE EXECUTED DIRECTLY, OR AS A CHAINFILE SUBROUTINE (Message)

=/FOR 1,\0 (FOR loop processing all arguments)
=LINK \ (RX) ,\ (RX) ,\ (RX) ; HIMSXL~=0 . .UTILIB.RO (Link files)

=/ENDFOR (End for loop processing)

=END (End chain file subroutine)

3-19

CHAL



CHAI

Chain File Example 2:

The following example illustrates parameter checking, conditional processinrg,
the PAUSE command, and FOR loops. Arguments 1-3 are default values (volume,
user, and catalog), and arguments 4-n are file names to be transferred.
Argument 1 is the source, while 2 and 3 are destinations. Note that if
arguments 2 and 3 are different user numbers, the chain file can only be
executed by user = 0. Also note that if both arguments 2 and 3 are null, no
files are transferred. First a check is performed for the presence cf an
argument 4 and, if none, a pause is executed to allow the user to enter from the
keyboard. Although an = prompt is displayed, the user must enter an =ARG
followed by the arjuments. Failure to precede the input with an = prompt will
cause the input to be ignored; however, the chain file processing will proceed.
Failure to input the arguments will cause the termination of the processing.
Note that the nested IF's require the two ENDIF's. In the FOR loop, processing
begins with the fourth argument (not necessarily the first). Note that the
conditional processing is properly terminated inside the FOR loop, as required.
Note that the first @END totally terminates the processing, although it is in a
nested IF. The second END does not require the @, although it is permissible.

=/TFC \4 (Test for argument 4)
=/%* ARG 1 = FRIM <{vol>:<user>.. (Message)
=/% ARG 2 = TO <vol>:<user>.. FOR .SA & RO (Message)
=/% BRG 3 = TO <vol>:<user>.. FOR .RO ONLY (Message)
=/% ARG 4 = FILENRMES TO BE TRANSFERRED (Message)

=/& ENTER "=ARG <argl>,<arg2>,<arg3>,<arg4>...." AND RETURN (Pause and message)

=/IFC \4

(Test for argument 4)

=/* YOUR ARGUMENTS WERE NOT ENTERED BECAUSE YOU DID NOT USE "=" FIRST

(Message if argument not entered)

=@END {(End all levels of nesting)

=/ENDIF (End second level of test for argument 4)
=/ENDIF (End first level of test for argument 4)
=/FOR 4,\0 {FOR loop processing)

=/1FS \2 {Test for argument 2)

=COPY \1\ (RX) .SA,\2\ (RX) .SA;Y
=COPY \I\(RX) .RO,\2\(RX) .RO; ¥
=/ENDIF

(Perform copy of .SA file)
(Perform copy of .RO file)
(End test for argument 2 processing)

=/IFS \3 (Test for argument 3)
=COPY \ I\ (RX) .RO,\3\ (RX) .RO;Y (Perform copy of .RO file only)
=/ENDIF (End IF argument 3 processing)
=/ENDFOR (End FOR loop processing)
=END (End chain file)

3~20



ARGUMENTS




3.2.3 Arguments Session Control Command (ARGUMENTS) ARG

The ARGUMENTS command offers argument (parameter) substitution capability.
Arguments to be substituted are specified on an ARGUMENTS command line, and
their entry sequence directly determines the position of each in the current
argument list. An argument's ordinal position in the current list (first,
second, ... nth) is used as a concise means of referencing the argument to
obtain an abbreviated notation. The notation permits concatenation of simple
arguments into compound arguments so that general procedures or chain files can
be implemented easily. Argument substitution is in effect for all modes of
command processing: online, chain, and batch. The current argument list
remains in effect until one of the following events occurs:

a&. A NOARG (clear arguments) is executed.
b. A new argument list is entered.
c. The session ends.

Common space is shared between the argument substitution pointer table and chain
file nesting (subroutine calls and FOR loops). A floating boundary exists
between the pointer "heap" and the nesting "stack". An appropriate error
message is displayed if an attempt is made to exceed the koundary. Thus, if a
system is generated with a large number of logical units per task, and nesting
is in effect, the number of arguments may be limited.

Argument substitution must comply with the following rules:
Maximum length of argument list = 156 characters

Argument 00 is the current number of arguments (number of the last argument)

Argument numbering = 01-79 (single digits permitted when no ambiguity exists)

Argument delimiter = "," (spaces are data, not delimiters).

String delimiter = < > (thus, <,> is taken to be a data comma rather than a
delimiter) .
Reference to arguments \<argument number>:
\00 is replaced with a 2-character string repre-
senting the number of arguments (or the number

of the last argument).

\12 refers to argument 12 (not \l concatenated with
a ).

\I\2 refers to a compound argument comprised of
argument 2 concatenated to argument 1.

\(RX) is replaced with the argument whose number is

in the RX pseudo register; i.e., indirectly
addressed.

3-21



ARGUMENTS Command Syntax

ARG[UMENTS] (Display argument list, regardless of OPT N)
ARG[UMENTS] <argl>,...<argn> (Enter new list and display unless OPT N is
set)

where <argn> is an expression and can be a tag with an argument in the following
syntax:

\<tagr=<string>

where:

tag May be a string of any length beginning with an alphabetic
character. The string may contain any character except an equal
sign (=) or a comma (,) unless the tag is enclosed in angle
brackets (< and »). In addition, since these string delimiting
symbols (< and ») are stripped, double entry is required for their
use within a string.

string Is the argument to be substituted.

A tag argument can be referenced by:

a. \<argument number> - i.e., first argument (\1l), second argument (\2),
etec. in the current argument list.
or

b. \<tag>=

EXAMPLES ¢

=ARG GCD,#PR,#NULL,IXMH, ,<BATCH GCD,#PR> (Argument list defined)
\1:GCD

\2:#PR

3 #NULL (Message resulting from execution of

\4 ¢ IXMH above ARG command line)

\5: (Null entry)

\6:BATCH GCD,#PR

=ARG <PASCAL \1,,\2>,PASCAL \1<, ,>\2

\1:PASCAL CCD,,#PR (Substitution made from previous list
\2:PASCAL GCD, ,#PR to create current list)
NOTE

Equivalent forms of <BATCH GCD,#PR> are:

BATCH <GCD,#PR>
BATCH GCDX,>#PR

3-22




=ARG A,B,C,D,E,F,G,H,I,J,K,L,M,N,0,P (Argument list defined)

\l:a

\2:B

\3:C

\4:D

\5:E

\6:F

\7:G

\8:H

\9:1

\10:J

\11:K

\l2:L

\13:M

\14:N

\15:0

\16:P

=03IN08\0I\OON\14 \04\05\13\15 (Concatenate parameter 3 before 8 before 1 ...
before 15)

CHAIN DEMO (Result of last line)

=ARG ABC,DEF,GHI (Argument list defined)
\1l:ABC
\2:DEF
\3:GHI
=ARG \1,PQR,\3 (To change one or more arguments specified
\l:aBC in the previous ARG list, the entire list
\2:PQR must be reexpressed in the desired form)
\3:GHI
=ARG CHAIN ,DEMO:,l,.,DEMOCHN,CF
\l:CHAIN
\2:DEMO:
\3:1
\d:.
\5 :DEMOCHN .CF
\6 :CF
=\IN2\3\4\4\5\4\6
CHAIN DEMO:1..DEMOCHN.CF (Chain processing initiated)
END CHAIN
=ARG 1<<2'3>>2,<l'2'3>
\1l:1<2,3>2
\2:1,2,3
=ARG 1<<2>
WARNING: NO. “<™ NOT EQUAL TO NO. ">V
\1:1<2>

3-23




.
i
;

\0 contains the number of arguments in the list.

argument being processed in a FOR loop construct.

Example of the Use of \0 and \ (EX)

A chain file consisting of the following statements:

ARG

Rx contains, by default, the

=/FOR i,\0 (For all of the arguments consisting of file names)
=ASM \ (RFX) ,\ (RX) ,\ (RX) ; RZ=80 (asM file)
=LINK \ {(RX) , \ (RX) ,\ (RX) ;HIMX (LINK file)

=SPOOL P \(RX) .LS,#PR

=SPOOL P \ (RX) .LL,¥PR
=/ENDFOR (End FOR locp processing)
=END

Example of the Use of Tag Notation

Existing arguments are displayed: 7

=ARG FILE=XYZ,DRIVE=4FD03,#PR
\1:FILE=XYZ

\2:DRIVE=$FD03

\3:4PR

Now, if the tag \FILE= is specified, XYZ is substituted.
if \1 is specified, FILE=XYZ is substituted.

Thus, following the above, the argument sequence can be changed:
=AR(; \3 1\21\1

\l:#PR

\2 :DRIVE=$FD03

\3:FILE=XYZ

and the tag argument can be changed:
=ARG \1,\2,FILE=ABC

\L:$PR

\2 :DRIVE={FD03

\3:FILE=ABC

permitting the following:

=PASCAL \FILE=,\FILE=,\FILE=
PASCAL ABC,ABC,ABC

3-24

(Print .LS file through spooler to #FR)
(Print .LL file through spooler to #PR)




|




3.2.4 No Arguments Session Control Command (NOARGUMENTS)

The No Arguments comriand clears the argument substitution list.

No Arguments Command Syntax

NOARG [ UMENTS]

EXMMPLE:

=RARG
\1:PAR]1
\2:PAR2
=NOARG
=ARG

(Display argument list; arguments previously set)

(Clear argument list)
(Display of cleared argument list requested)
(List contains no argument)

3.2.5 Break Stop Session Control Command (BSTOP)

BSTO

The Break Stop command is used to specify the option to issue a "STOP" to
task(s) when break notification is received by the session control task.

(Default is to terminate all tasks on break.)

OPT H.

a.

b

Ce

NOTES

Break notification is sent if there is no I/0 in progress with
the terminal. If the I/0 request in progress specifies break
notification, the requestor receives the notification (rather
than the session control task).

The session control task requests break notification during 1/0
requests. If a prompt has been issued and input is not complete,
a break will terminate the input with break error indication.
If any user tasks in the same session are executing or are
executable, they are neither terminated nor stopped as the
result of terminating the input with the BREAK key.

This works in conjunction with OPT D. If -D is in effect
(default), user tasks in the current session are terminated (-H)
or stopped (H). If D is in effect, only the default user task
(i.e., the last task started) is terminated (-~H) or stopped (H).

Break Stop Command Syntax

BS1T0[P]

3-25

This command is identical to




|

TINUE
'CON

i

DATE




3.2.6 Break Terminate Session Control Command (BTER) BTER
The Break Terminate command restores the default action to "TERM" tasks when

break notification is received by the session control task. (See Break Stop
"notes" in paragraph 3.2.5.) This command is identical to OPT -H.

Break Terminate Cammand Syntax

BTER[M]

3.2.7 Contimue Session Control Command (CONTINUE) CONT

The Continue command allows a task to resume execution following a STOP (from
either an operator command or from a Break Stop action). The executive
directive, START, is issued to task(s) specified (without registers supplied
option) .

Continue Command Syntax

CONT [ INUE] (Default user task assumed)
CONT[INUE] <tttt> <ssss> {Continue specified task)
CONT[INUE] ALL <ssss> (Continue all tasks in specified session)

where default <ssss> is the current session. If <ssss> is specified, it must be
the current session unless the user number at logon = 0.

3.2.8 Date Sesgion Control Commard (DATE) DATE

The DATE command may be used to provide a time and date logging function, or to
set the current date if the user number at logon time = 0 and if the system is
not operating in the chain or batch mode. The current date may not be set in
the chain or batch mode. (If user number is not 0, DATE displays the current
date and time.) If user number = 0, a prompt is issued to "ENTER DATE
(MM4/DD/YY) =", where year must be 80 or greater. Each of the entries is
validated and an error results in another prompt. To exit without changing the
date, depress the BREAI" key.

DATE Command Syntax

DATE

DATE Command Example (User 0)

=DATE

08:17:52 6/2/80

ENTER DATE (MM/DL/YR)=13/26/80 (Illegal MM)

ENTER DATE (MM/DD/YR)=1/32/80 (Illegal DD)

ENTER DATE (MM/DD/YR)=1.1.80 (Illegal separator)

ENTER DATE (MM/DI/YR)=1/1/79 (Illegal ¥YR; year tested to ensure 80-99)
ENTER DATE (MM/DD/YR) =<{BREAK> (Exit, no change)

=DATE

08:21:39 6/2/80

ENTER DATE (MM/DD/YR) =<BREAK> (Exit, no change)

3-26







3.2.9 Defaults Session Control Command (DEFAULTS)

The Defaults command displays the current default values assumed by the session
control task, and also displays set options. The USE command terminates with an
implied DEF unless OPT N; i.e., the result of the USE command is displayed as if

a DFF were entered unless option N is set.

DEFAULTS Cammand Syntax

DEF [AULTS)

DEFAULTS Command Example

after initial logon, SESSION 0001 -

=DEF

SYSTEM VOLUME = SYSO:

USE DEFAULT VOLUME = SYS0:0..
USER NUMBER = 0

USER TASK =

SESSION = 0001

TERMINAL = CNOO

OPTION(S) SET =

after logon as "DEMO:1" -

=DEF
SYSTEM VOLUME = 5YS0:
USE DEFAULT VOLUME = DEMO:1l..
USER NUMBER = 1
USER TASK =
SESSION = 0002
TERMINAL = QNOO
CPTION(S] SET =
=LOAD DIR
DIR 0002: LOADED
=DEF
SYSTEM VOLUME = SYS0:
USE DEFAULT VOLUME = DEMO:1..
USER NUMBER = 1
USER TASK = DIR
SESSION = 0002
TERMINAL = CNOO
OPTION(S) SET =

(null catalog)
(logon user number)
(no task name; i.e., no tasks loaded)

-{no options set)

{mull catalog)
(logon user number)
{no default user task)

(rull catalog)

NOTE

User number entered with USE DEFAULT should be the
gsame as the logon user number, unless logon

user number = 0.

3-27







3.2.10 Load Session Cortrol Command (LOAD) LOAD

The LOAD command creates a task and performs the load function for a program,
but does not initiate execution of the program. For example, the user can load
a program from a diskette and then change the diskette before initiating the
program. Multiple loads are allowed, with the last one becoming the assumed
default user task.

LOAD Command Syntax

LOAD <task descriptor> [<task arguments>]
where:

task descriptor Is the file name field of the file descriptor of a load
module -- i.e., a file of .LO extension.

task arguments Is comprised of those arguments required by the task to
be loaded.

LOAD Comnand Example

=L,0AD BACKUP #FD00,#FDOL
BACK x«xx: LOADED (response indicating normal completion; xxxx is session no.)

In this example, the program in file name “BACKUP" is loaded. The response
message indicates the task name is "BACK" (which is used in subsequent system
control commands to refer to this task.)

NOTES

The argument “§FDOO0,$#FD01* is passed to the task "BACK"
A

dvies e Tmaadi e mesacaces
bEbg WiIE LSUMG IR y;vvwson

BACK becomes the default user task which may be assumed
by subsequent system control commands until: (a) another
user task is loaded, or (b) BACK is started and either
terminates or aborts.

3-28







3.2.11 Option Session Control Command (OPTION) OPT

The OPTION command allows any of fifteen alphabetic letter options, A through 0,
to be set (or cleared) for use, either singly or in the desired combinations.
The resulting combination of options set is displayed unless OPT N is set.

OPTION Command Syntax

OPT[ION] [;<options>]

where <options> may be one or more of the following:

A -

<]
i

G =
i

Aborts chain file processing when a task terminates/aborts with
A0 # 0.

Ring terminal bell when command prompt is issued.
Reserved.

User default task only is terminated or stopped on break (default
is all user tasks).

Reserved.
Reserved.
Reserved.

Stop task(s) on break. (Also set by BSTOP command.) (Default is
terminate; also reset by BTERM command.)

Perform task dump if task aborts.

Inhibit echo in SBARG subroutine (argument substitution subroutine
for processing inputs to user tasks).

Inhibit translation of lowercase alphabetic letters to uppercase
(also used by SBARG}).

List =/xxx commands executed.

List =/xxx commands skipped as a result of a false condition.

No echo. Chain file commands are not displayed. This overrides
options L and M. Also inhibits displaying the results of
ARGUMENTS, OPTION, and USE commands.

Override error or abort and continue processing.

The default values for all options are the reset cendition; i.e., -A through -O.

3-29




OPT

OPTION Command Examples

=0PT ;L List =/{X commands.
=0P1T s-L (default) NO list.
NOTE: =/ and =/ABT are printed if not in skip mode (skip mode is
the action taken when IF test conditions are not met).
=0PT ;M List =/XXX commands which are not executed during skip mode --
i.e., the condition was not met. The "=" is altered to a “/" and
the resulting //XXX is printed.
NOTE: The "ENDIF" is printed //ENDIF.
=0PT ;0 Override error or abort - continue processing.
NOTES: a. Does not override =/ABT.
b. Does not override syntax errors in =/XXX commands.
=0PT ;-0 (default) Abort chain processing on error or command abort.

Examples of Chain Processing Options L, M, N

LISTING OF INPUT CHAIN FILE
PAGE 1 LISTING OF ELSE.CF

| =OPT
: =ARG A
=/IFS \1

=/*TEST 1 SET

=/ELSE

=/*TEST 1 CLEAR .
=/ENDIF
=/IFC \1

=*TEST 2 CLEAR
=/ELSE

=/*TEST 2 SET
=/ENDIF

3-30




PRINTOUT DURING EXECUTION
. DEFAULT/NORMAL (NO OPTIONS SET)

=0pPT

OPTION(S) SET =
=ARG A
\L:A

=/*TEST 1 SET
=/*TEST 2 SET
=NOARG

=/%TEST 3 CLEAR
=/*TEST 4 CLEAR
=END

END CHAIN

VARIATIONS OF PRINTOUT DURING EXECUTION

=0pT

OPTION(S) SET = L
=ARG A
\l:a

=/1FS A

=/*TEST 1 SET
=/ELSE
=/IFC A

=/*TEST 2 SET

=/ENDIF
@ o
=/IFS ~
=/*TEST 3 CLEAR
=/ENDIF
=/IFC ~
=/*TEST 4 CLEAR
=/ELSE
=END
END CHAIN

=0PT

OPTION(S) SET = M
=ARG A
\1l:&4

=/*TEST 1 SET
//* TEST 1 CLEAR
//ENDIP
//ELSE

=/*TEST 2 SET
=NOARG

//*TEST 3 SET

//ELSE
=/*TEST 3 CLEAR
=/*TEST 4 CLEAR
//*TEST 4 SET
//ENDIF
=KD
'END CHAIN

3-31



=0PT

OPTION(S) SET = 1M
=BRE A
\1l:a

=/IFS A

=/*TEST 1 SET
=/ELSE
//% TEST 1 CLEAR
//ENDIF
Ca/IFC A
//ELSE

=/®TEST 2 SET
=/ENDIF
=NOARG
=/IFS ~

//*TEST 3 SET

//*TEST 4 SET
//ENDIF

=END

END CHAIN

OPTION(S) SET = IMN (N overrides LM)

END CHAIN

OPTION(S) SET = N
END CHAIN

Tilde (") represents a null argument.

332 N




START




3.2.12 Start Session Control Command (START) STAR

The START command allows a previously loaded task to be initieted. If the task
was not initiated when loaded, the START command passes register values to the
task being started. In the event the task was initiated arnxl stopped, it is
treated as if a CONTINUE command were issued (the registers are not altered and
the task resumes execution). The task started becomes the default task.

When a task is initiated (either as a result of STAR or load and go), the
registers of the user task are initialized by VERSAdos as follows:

D0 Task name that loaded/started user task (monitor task).
DI  Session number that loaded/started user task (monitor task).
D2 User default volume name.
D3 Default user number.
D4
D5
D6 Length of command line passed (not including file name/command
and terminating spaces).
D7 PRit mask of logical units assigned to user task where
bit number = logical unit number.
A0 ‘rfask name of the user task (as read from loader information block) .
Al Terminal identification at logon time.
A2 Actual user number at logon time.
A3 Actual session number of user task.
A4-A7 Reserved for future use.

User default catalog name.

D7 NOTES

a. LUN=0 is not available to user tasks. Therefore, if set
to 1, bit 0 indicates LUN 5 is the terminal device; if
set to 0, bit 0 indicates LUN 5 is a file (Chain or
Batch mode) . )

b. The commard device or file (LUN=5) is assigned as public
read and write when bit 0 is set to 1 (interactive mode)
and public read only (chain or batch mode) when bit 0 is
set to 0.

c. The log/list device or file (LUN=6) is assigned as public
write only.

d. LUN's 5 and 6 are passed with keep option; all others are
passed with/without keep, depending whether @ASSIGN‘ed/
ASSIGN'ed from the terminal (paragraph 3.3.1).

e. In the interactive mode, including the “chain aborted”
mode, LUN 0 is transferred to the user task LUN 5. Thus,
utility tasks using interactive mode may be executed
during chain abort. During this time, LUN 5 remains
assigned to the chain file; hence, the chain file can
not be edited in the "chain abort" mode, but other files
may be edited (unless assigned to a stopped user task).
bDuring chain file processing or batch mode, LUN 5 of the
session control task is transferred to LUN 5 of the user
task.

3-33




START Command Syntax

[€]STAR[T] (start default user task)

[@]STAR[T] [<task name> [<task session number>]] (start specified task)

where:

task name

task session number

aeo

be

Co

or

created.

NOTES

If the task name and session number are not known, they may be
found by means of the DEF command.

The optional "@" causes a prompt for another command following
initiation of the task. Normally, a “wait for event" executive
directive is executed following initiation. When the user task
terminates or aborts, the session control task is awakened and
a prompt for a new command is issued.

If a task name is not specified, the last task loaded (but not
terminated or aborted) is assumed. If session number is
specitied, it must match the current session number, or the
actual user number at logon must be 0. If a session number is
specified, a task name must also be specified before the
session number.

334

STAR

Is the 4-character name of the last task loaded.

Is the number of the session in which the task was




|
m




3.2.13 Stop Session Control Command (STOP) STOP

The STOP command causes a task to discontinue execution. The executive
directive, STOP, is issued to the task(s) specified. Task(s) which have been
stopped may be continued or terminated by subsequent commands. (All user tasks
in the same session which were stopped are terminated automatically when the
session is terminated by LOGOFF or BYE commands.)

STOP Command Syntax

STOP (Default user task assumed)
STOP <titt> [<ssss>] (Stop specified task)
where:
tttt Is a 4-character task name (valid for the specified session).

8SSS Default <ssss> is current session and, if <ssss> is specified, it |
mist be the current session unless the user number at logon = 0. |

See notes for TERMINATE command.

3-35







3.2.14 Terminate Session Control Command (TERMINATE)

The TERMINATE command causes the specified task(s) to be discontinued and
All I/0 is halted, all files and devices are closed

3y default, a TERM ALL
This command issues the

removed from the system.
and released, and all allocated memory is deallocated.
command is issued when the BREAK key is pressed.

executive directive, TERMT, to the specified tasks.

TERMINATE Command Syntax

TERM[ INATE] (Default user task assumed)

TERM{ INATE] <tttt> <ssss>
TERM[ INATE| ALL <ssss>

where:
tttt

S88S

(Terminate specified task)

Is a 4-character task name (valid tor the specified session}.

Default <ssss> is current session and, if <ssss> is specified, it
must be the current session unless the user number at logon = 0.

NOTES

The first character of a task name must begin with either
A-Z or “.%. Session control tasks begin with "&", and
they may not be directly terminated. An entire session
may be terminated by user 0 with “TERM ALL xxxx", where
xxxx = session number. A test is performed to determine
whether or not terminating a task will cause the operating
system to crash. Such tasks may not be terminated.

User session tasks have session numbers consisting of ASCII
characters. Server system tasks (beginning with ".") have
binary session numbers; e.g., the spooling task. Binary
session numbers must be preceded by "&". Examples:

TERM .SPL &l (spooling task)
TERM PR &l (printer task)

3-36

(Terminate all tasks in specified secsion)



|
|
|




3.2.15 Time Session Control Command (TIME) TIME

The TIME command may be used to provide a time and date logging function, or to
set the current time if the user number at logon time = 0 and if the system is
not operating in the chain or batch mode. The current time may not be set in
the chain or batch mode. If user number = 0, a prompt is issued to "ENTER TIME
(HR:MIN) =", Fach of the entries is validated and an error results in another
prompt. To exit without changing the time, depress the BREAK key. If the TIME
command is entered by a user other than 0, only the current time and date are

displayed.

TIME Command Syntax

TIME

TIME Command Example (User 0)

=TIME

09:22:37 4/2/82

ENTER TIME (HR:MIN)=13:9 {(Time changed)
=TIME

13:9:12 4/2/82 _

ENTER TIME (HR:MIN)=<{BREAK> (Exit, no change)

TIME Command Example (Other Users)

=TIME
09:10:42 4/6/82

337







3.2.16 Use Session Control Command (USE) USE

The USE command establishes default values to be used when abbreviated file
names are specified. Default values for volume name, user number, and catalog
may be specified for use until a subsequent USE command is issued or the user
logs off. Only the fields entered are changed; the fields not supplied remain
unchanged -- e.g., if only the user number is entered, the previous defaults for
volume and catalog remain in effect. If a volume is specified, the volume is
established as a user default volume for the duration of the session (or until a
new default volume is specified).

When a user or system utility task is started, the most current user default
volume is passed to the user task in register D2. The default user number is
passed in register D3 (the actual user number at logon time is passed in A2).
Default catalog is passed in D4 and D5. (See description of START, paragraph
3.2.12.)

USE Command Syntax

USE [<volume name>:] [<user number>][.<catalog>]

where:
volume name Is the optional 1- to 4-alphanumeric character volume ID
field of a file descriptor.
user number Is the optional 1l- to 4-decimal digit user number field
of a file descriptor.
catalog Is the optional 1- to 8-alphanumeric character catalog

field of a file descriptor.

NOTE

The changed result is displayed as if a DEF
command had been entered. The resulting
display may be inhibited by setting OPT N.

3-38




Supplying Use Values at Logon Time

At logon time, the initial entry is processed as if a USE command were
specified. Prior to processing the initial logon entry, the assumed default
values are:

Volume = Previously specified system volume
User = {Must be entered at logon time)
Catalog = All spaces (null or none)

To log on, the user must supply a user number, even if 0; volume and cataleg may
or may not be supplied. (Session 0001 requires specification of the system

default volume, which also becomes the user defauit volume until changed by a
subsequent USE command or the user logs off.)

NOTE: Changing the default catalog requires user number and/or volume == €.g.,
<user mmber>.<catalog>
<volume named:<user number>.<{catalog>
: .<catalog> (default volume and user number)

To reset a defavlt catalog to all spaces from any non-space value requires a
special entry (because omitting a catalog preserves the previous entry).

<catalog>=& resets default catalog to all spaces
Examples:
<user nurber>.&

<volume name):<user number>.&
: .&

Session 0001 Logon

Session 0001 may be initiated by any user numbers. Session 0001 requires entry
of the system default volume, even if only confirming the assumed default by
antry of "“:" followed by the user number. (Default system volume is specified
at system generation. As supplied, the volume is S¥S: for hard-disk-based
systems, SYSO: for floppy-disk-based systems.) Time and date must also be
entered, which is normally reserved for user 0, but is permissible for any user
during this session. Upon completion of logon, a chain file, <default system
voluned :0 . PRIV.UPSYSTEM.CF is executed on behalf of user 0. The contents of
this chain file can be changed by the system administrator by using the CRT
editor. Suggested commands include start of spooling, SWORD, SECURE, and output
of a message indicating the system has been started.

3-39




" SESSION

CONTROL
COMMAND




3.2.17 ~ Session Contrcl Command

The ~ session control command is used to cause the session control task to go
into the dormant state. This command removes the conflict which arises when the
session control task is prompting for input at the time a user task has
outstanding 1/0 to the terminal. Then, at completion of user task I/0, the
session control task is automatically reactivated. Should the = command be
entered when no conflict exists, the user task may be restarted by depressing
the BREAK key.

“ Command Syntax

o

~ Command Examples

=@DIR The @ option entered ahead of DIR causes an immediate prompt for

=" another command while the DIR.LO file is loaded and started, but
prevented from using the terminal. This prompt inhibits output to
the terminal from the DIR command. (Session control gives
priority of terminal access to any task in the foreground over a
task running in batch.)

Entry of the = command puts session control into the dormant
state, allowing DIR (the batch task) to output the default volume
directory entries. The session control task is restarted and a
new prompt issued when DIR activities are completed.

=@STAR (or @CONT)
- Any task started or continued can have conflicting I/0 to the
_terminal and additional tasks may need to be started or continued
in a particular sequence. Thus, the = command may be used to
cause the session control task to go dormant at the appropriate
time.

3.3 VERSAdos HARD DISK SYSTEM SESSION CONTROL

iIn addition to the universal session control commands described in
paragraph 3.2, versions of VERSAdos supplied with the multiuser hard-disk-based
systems provide the following capabilities. These commanis can be added to or
excluded from the single-user version when performing a system genszration.
vhese commands are also executed as part of the session control task estzblished
at session initialization. In the command descriptions below, characters within
square brackets are optional.

COMMAND DESCRIPTION

ASSI[GN] Assign device/file to logical unit.

CLOS[E] Dissolve logical unit number assigned to device/file.
HELP Display available session control commands.

HEWS Display contents of O.PRIV.NEWS.NW







3.3.1 Assign Session Control Command (ASSIGNj ASSI

The ASSIGN command allows a user to assign a logical unit number (LUN) to a
device or file. The assignment is made for the session control task with the
access permission specified, and is passed to user task(s) that are subsequently
started by the session control task. When the command is preceded by an "@",
the session contrel task keeps the assignment and passes the assignment to user
tasks with the FHS KEEP option. When not preceded by an @, the assigmment is
passed only to the next task started without the ¥¥S KEEP option.

ASSIGN Command Syntax

[@]ASSI[GN] <lun>,<file/devicer<space><access permission>
or
[@IASSI[GN] <lun>,<file/device>;0=[S]nnnn
where:

@ Causes the control task to "keep" the assignment and
pass to all subsequent tasks (refer to design
specification regarding FHS function of change 1u
assignment) .

NOTE: May not be used with an exclusive access
permission.

lun Is a logical unit mumber. As supplied, VERSAdos
supports nine LUN's and normally uses the following
convention:

0 - reserved for session management

1 - input function

2 - output function

3 - listing function (when distinguished from
system output) -

4 - load or second input (as in a merge)

5 -~ system input from a command device or file

6 -~ system output to a log/list device or file

7 } used for chain file subroutine returns and FOR
8 | processing

NOTE
To ascertain conditions under which the preceding con-
ventions may not be followed, refer to the description
of the ASSIGN command in the VERSAdos Data Management
Services and Program Loader User's Manual, RMS68KIO.

file/device Is a device name or the file nave field of a file
descriptor.

3-41




E
|
|
s
%
1
3
3
4
:

ASSI
access permission Is one of the following valid access permission codes:

- EREW Exclusive read and exclusive write
Exclusive read and public write
Public read and exclusive write
Public read ané public write
Exclusive write

Public write

Exclusive read

BR Public read

%EE%%%

In the alternate form of the ASSIGN comand syntax shown above, the letter O is
the only option allowed, and nnnn is the value used in the options field of the
trap §3 parameter block:

nnnn= 0 PR
2 BW
$ A PW with overwrite existing file
$ 40 PR, position record pointer at end of file

BASSIGN Command Example

ASSI  3,4PR PW Assign LUN=3 to #PR (line printer) with public write
or access.
ASSI  3,#PR;0=2

NOTE

If the access permission includes write capability,
option bit 6 is set to position the current record
peinter to the end of file (previocusly, it was by
detault always set to the beginning of the file,
which had the effect of only allowing sequential
tiles to be assigned for write purposes).







3.3.2 Close Session Control Command (CLOSE) CLOS

The CLOSE command is used to dissolve a logical unit assignment. Since terminal
assignments made without the KEEP option are dissolved by the start of the first
using task, the main use of the CLOSE command is dissolution of assignments
which specified the KEEP option — @. The CLOSE command can be used to release
an assignment to LUN 5 or LUN 6; however, a user task will not be started unless
both LUN's 5 and 6 are assigned (on-line dialeg is through LUN 0, which cannot
be closed). In the chain mode (on line), closing LUN 5 has the effect of both
aborting the chain mode processing and issuing an END command.

In the batch mode, closing LUN 5 or LUN 6 will abort the batch job.

CLOSE Command Syntax

CLOS[E] <lun>
where:
lun Is a logical unit number.

CLOSE Command Example

CLos 3 Dissolves assignment to LUN 3.

3.3.3 Help Session Control Command (HELP) HELP
The HELP command causes output of a display of the session control tasks.

Required characters and allowable characters for each command are shown -- the
latter in lowercase.

HELP Command Syntax

HELP

HELP Command Example

=HELP

SESSION CONTROL COMMBNDS:

LOG OFf LOGOFE OFF BYE

LOBD STARL STOP CONTinue
TEMinate /\ DATE TIME

USE DEFaults ARGuments  NOARRGuments
BSTOD BTERm OPTions NEWS
HELP ASSIgn CiloSe CHAIn
END RETRy PROCeed R?

BATCh CANCel QUERy E.IMinate
PaSSword SWORD SECURE

(ENTRY OF LOWER CASE LETTERS OPTIONAL)

3-43




IS T R R S T L o T




3.3.4 MNews Session Control Command (NEWS) NEWS

Execution of the NEWS command causes an attempt to assign the file PRIV.NEWS.NW
on the system default volume, user 0, to the LUN 1 communicaticn channel. If
successful, the file contents are directed to LUN 6, the system console. Thus,
the file can be used to provide information to users.

The file belongs to the system administrator (user = 0); therefore, its contents
can only be altered by user 0 through use of the CRT editor. Any user, however,
can invoke the NEWS command.

Information of a general nature is contained in the file, as supplied.

NEWS Command Syntax

NEWS

3.3.5 Dissemination of News and sirstem Information

Provision (in addition to that afforded by the NEWS session control command) has
been made for the system administrator (user = 0) to disseminate information to
users. Immediately following the logon message and prior to display of the
first prompt, an attempt is made to assign the file 0.PRIV.BULLETIN.NW on the
system default volume, user 0. If successful, the contents of the file are sent
to LUN 6 (the logcn terminal).

Should an attempt to log on be rejected, the fiie 0.PRIV.REJECT.NW is similarly
output. .

These files belong to the system administrator. Therefore, only user 0 can
alter their contents.

Data in these files is changed, as desired, through use of the CRT editor. Some
information of a general nature is contained in the files, as supplied.

3-44



+

UTILITIES

UTILITIES




CHAPTER 4
VERSAdos UTILITIES

4.1 INTRODUCTION

This chapter describes utilitarian functions of VERSAdos. Paragraph 4.2
describes those utilities which are supplied for use with both floppy disk and
hard disk-based systems. Utilities for hard disk systems only are described in
paragraph 4.3.

VERSAdos utilities are invoked by simply entering the name of the load image
file (LO) which performs the function. The session control task calls the
loader to create a task and load the file, and then starts the function. Since
user-created files of type LO can also be loaded and started by simply
specifying their name, any which perform a useful function may also be
considered utility commands. These are created through use of the LINK command
(linkage editor).

It is suwetimes useful to load a utility but, rather than have execution begin
automatically, start execution manually at the desired time. For example, this
two-step operation will allow a diskette to be changed between loading and
execution, which can be helpful in a two-drive system. The session control
command LOAD, used in conjunction with the session control command START, allows
this to be done. If the utility to be loaded requires arguments, these must be
specified on the LOAD command line.

Error messages which may occur during execution of a utility progrem are
described in the VERSAdos Messages Reference Manual, MGBKVMSG.
4.2 COMMON UTILITIES

The utilities described in the following paragraphs may be used by all systems,
regardless of disk storage type.

4~-1







4.2.1 BACKUP Utility (BACKUP) BRCKUP

The BACKUP utility transfers data from one digk to another. Two majoxr operating
modes are provided by BACKUP: “track-to-track data transfer® and “file
transfer". Before using BBCKUP, new disks must have been formatted for
VERSAdos, using the INIT utility.

Track-to-track mode is faster, but both the scurce and the destination disk must
be of the same kind (hard or diskette) and capacity (except in single-to-double
sided diskette backup). Information transferred in this mode cannot be selected
or modified. Variations of the mode allow unveriiied transfer of data, transfer
with verification, and single byte-to-byte comparison of two disks. Reporting
of source destination disk differences is provided.

the file transfer mode provides more latitude. Source and destination disks can
be of different kind and size. Individual files or families of files can be
selected for iransfer. File descriptor fields information can be specified on
the destination disk. Indexed sequential files can be packed to reclaim
internal file space. Files can be packed together to reclaim disk space. A
starting point at which file transfer should begin can be specified on the
source disk. Files can be selected by date range and/or file/family, or can be
selected one at a time. When source data exceeds capacity of the destination
disk, the file transfer mode permits insertion of additional destination
disk(s). The additional disk(s) must have been initialized previocusly with the
INIT utility.

The description and ownership of the destination disk may be specified in either
mode .

If, during the backup procedure, the user tries to change the status of the disk
being backed up from ‘not write protected' to ‘write protected', BACKUP will
abort with a Device Status Change Error.

The desired BACKUP mode is selected by specifying one or more options in the
command line options field.

BACKUP Command Syntax

BACKUP [<input field>,<output field>][,<list field>][;<options>]
or
BACKUP [,.<list field>](;<options>]

where:
input field Source; may be any <volumed:[<user>][.<catalog>] or device
name (no file name or extension allowed). If not specified,
defaults to lowest numbered hard disk device (if present;
usually #HD0O} or the lowest numbered floppy disk device.
Refer also to Tables 4-1 through 4-3.
output field pestination; may be any <volumed>:{<user>][.<catalog>] or

device name (no file name or extension allowed). If not
specified, defaults to second lowest hard disk device (if
present; usually #HDOl) or second lowest floppy device.
Refer also to Tables 4-1 through 4-3.

4-2




E’ B
E;
E;

|

list field

options

BACKUP

Is a file name or device name. If option A or S is
specified, the names of those files created on backup volumes
are put in the list file. If option V or B is specified, any
discrepancies found in the verify process are sent to the
list File. The list file is not usad for option U. If input
and output fields are not specified, list field must be
preceded by two commas. The default value for this field is
the logon terminal.

(File transfer mode): Entering one of the main options A or
R selects this mode. A variation is obtained by entering one
or more of the sub-options -- ¥, N, S, or P. Refer also to
Table 4-3.

A - BAppend option. Files are transferred from the source
disk to the destination disk. This is the default option
when the backup involves a hard disk, or when ¥, N, S, or
P is entered without entering A or R. Source and
destination disks may be of different types.

Y - When a file to be backed up already exists on the
destination disk, the Y modifier causes the file to
be overwritten.

N - When a file to be backed up already exists on the
destination disk, the N modifier prevents the file
from being overwritten (the new version is not
copied) .

S - The S modifier allows the user to enter a starting
point in the imput volume directory for the backup.
This is especially useful if a backup is aborted,
since it prevents one from having to start over from
the beginning.

P - The P modifier specifies that all unused space within
an indexed sequential file is to be reclaimed,
thereby generating tightly packed files on the output
disk and more free space, although the backup will
proceed more slowly.

The A option also allows selection of files by date range
and/or by file/family (when ®S" for Y“SELECT FILES" is
entered when prompted); if neither date range nor
file/family is reguested, files may be selected one at a
time.

4-3



options

BACKUP

R - Recrganize option (destination disk must be a floppy).
The destination floppy is first initialized, followed Dy
an option "A" copy. The effect of this is to consolidate
available disk space which exists between files into one
large block at the end of the disk. The initialization
that takes place does not do any formatting or
validation, so the floppy must have been initialized
previcusly using the INIT utility.

P - The P modifier specifies that all unused space within
an indeyxed sequential file is to be reclaimed,
thereby generating tightly packed files on the output
disk and more free space, although the backup will
proceed more slowly.

(Track-to-track mode): Entering one of the main options U,
V. or B selects this mode. A variation is obtained by
entering one or more of the sub-options C or T. Source disk
and destination disk must be of equal capacity (except in
single~-to-double sided diskette backup). Refer also to
Table 4-3.

U - Track-by-track option. The input.  disk will be copied
track-by-track to the output disk. This is the default
option when both disks are floppies or if the C
sub-option is specified without the V or B option.
Destination disk must have 0 bad sectors, as ascertained
during formatting with INIT.

C - The C modifier specifies that if read or write errors
occur during the transfer, BACKUP should continue
from the point beyond the error (rather than
terminating) .

V - Verify option. The imput and output disks will be
compared, byte for byte, and any discrepancies will be
listed to the list field.

T - The T modifier truncates the verify listing so that
if more than one discrepancy is found in a given
sector, only the first discrepancy will be printed.
May not be specified without V or B.

44




BACRUP

B - Backup option. An option U backup is performed, followed
by an option V backup to verify the data. Recommended
when destination disk is suspected of having bad sectors.
If bad sectors are found, lock them out using the INIT
utility and run the backup again with a file-by-file
option.

G -

The C modifier specifies that if read or write errors
occur during the transfer, BACKUP should continue
from the point beyond the error (rather than
terminating) .

The T modifier truncates the verify listing so that
if more than one discrepancy is found in a given
sector, only the first discrepancy will be printed.
May not be specified without V or B.

NOTE
The track-to-track options (U, V, B) should be used
only when the source and Jdestination disks are of
identical media formats (i.e., media configuration
attributes and parameters in the configuration areas
on both disks are identical). The BACKUP utility
will nct produce an error if disks of different
formats are used, but the output disk will be
unuasable. )

4-5




TARLE 4-1. Destination User Number Field Values

QUTPUT FIELD
INPUT FIELD NOLL SPECIFIED VALUE &
NULL Current default Output value Current default
SPECIFIED VALUE Current default Cutput value Input value
* Source values Invalid Source values
NOTE: This table depicts the user mumber that will be assigned to files

created on the destination volume, depending on how the user number
was specified in the input and output fields of the command line.
Mull obtains current user mumber default value. * represents all

(or any} valid values for that field ("wildcard"). Multiple user
numbers cannot ke backed up to a single user number in one operation.

TABLE 4-2. Destination Catalog Field Values

QUTPUT FIELD
SPECIFIED

INPUT FIELD NULL VALUE * {FIELD) * (CHARACTER)
NULL Current default Output value Current default Invalid
SPECIFIED Current default Output value Input value Invalid
VALUE
* (FIFLD) Source values Invalid Source values Invalid
* (CHARACTER) Source values Invalid Source values Invalid

MOTE: This table depicts the catalog name that will be assigned to files

created on the destination volume, depending on how the catalog name
was specified in the input and ocutput fields of the command line.
Null obtains current catalog field default value. * represents all
(or any) valid values for that field or character position in the
field ("wildcard®). Multiple catalogs camnot be backed up to a
single catalog in one operation.

NOTE

See also the "Use of the * Character™ paragraph in
the COPY utility description, paragraph 4.2.3.




TABLE 4-3. Destination Disk Volume ID Field Values

DESTINATION VID FIELD

LOGON BACKUP
USER NIMBER OPTION VOLUME ID USER NUMBER DESCRIPTION
=0 R Note (a) Note (b) Note (e)
#0 R Note (a) Current default Note (c})
Any Uor B Note {(d) Source value Note (4)
NOTES:

(a) User is prompted for inmput. Input is reguired. Default not allowed.
{b) User is prompted. No input obtains current default user number.

(c) User is prompted. No input obtains scurce description (if logon user
mmber is zero or the same as the source user mumber) or a blank field
(if logon user number is non-zero and not the same as the source user
munber) .

(d) If source disk was loaded before destination disk, user is prompted;
no input obtains corresponding source field value. If source disk was
loaded after destination disk or is a non-VERSAdos disk, no prompt is
issued. Source sector 0 is transferred as is.

(e) Mo imput obtains same description as source disk.

Examples

in the following examples, operator inputs are shown underscored for clarity and
are followed by a carriage return. The underscore is not typed. Note that in
some examples, more operator inputs will be requested if the user is user 0.

Example 1 - Disk backup, minimum command line, on a system with no hard disks

=BACKUP

TOPY FROM DEVICE FDxx TO DEVICE FDxx (Y/N) ? ¥
STARTING TRACK-BY-TRACK BACKUP PROCESS

ENTER NEW VOLUME NAME

ENTER DESCRIPTION (MAX 20 CHARACTERS)

The system selects the first two drive numbers (normally zero and one) for xx.
Using the default option U, all files on the source are copied (track by track)
onto the destination disk. If specified, a new volume ID and user description
are created on the destination disk.

4-17




Example 2 - Disk backup with verify

=BACKUP $FDOL,#FD02;B .
STARTING TRACK-BY-TRACK BACKUP PROCESS
ENTER NEW VOLUME NAME
ENTER DESCRIPTION (MAX 20 CHARACTERS)
STARTING VERIFY PROCESS

The disk in #FD01 is copied to the disk in #FD02, and then they are compared.
If specified, a new vwolume ID and user description are created on the
destination disk.

Example 3 - Volume backup, floppy disks

=BACKUP VOL1:,VOL2:
STARTING TRACK-BY-TRACK BACKUP PROCESS
ENTER NEW VOLUME NAME
ENTER DESCRIPTION (MAX 20 CHARACTERS)

All files on VOLl are copied onto VOL2. If specified, a new volume ID and
description are created on VOL2; otherwise, the volume ID on the destination is

changed to VOLL and the description is also changed. If using hard disks rather 1
than floppies, option A will go into effect.

Example 4 - Append files

=RBACKUP VOL2:*.%,VOL3: ;2
STARTING FILE-BY-FILE BACKUP PROCESS
COPY ALL FILES, SELECT FILES, OR QUIT (A/S/Q}? A

Files on VOL2 are copied onto the remaining space on the drive 1 disk (or VOL3)
until an identical file descriptor is encountered on the destination volume.
The following message is then displayed:

DUPLICATE FILE - CK 70 COPY (Y/W/Q)? (full file descriptor of output file
displayed here)

A Y response causes the destination file to be overwritten with the source file.
An N response or just a carriage return causes the source file to be bypassed
and execution contimued until another identical file descriptor is found or all
files are copied. The volume ID field in the file descriptor of each
transferred file is changed to VOL3. A ¢ response causes BACKUP to terminate at
that point. :

4-8




Example 5 - Append files automatically

=BACKUP VOL1:,VOLZ:;AY
STARTING FILE-BY-FILE BACKUP PROCESS
COPY ALL FILES, SELECT FILES, OR QUIT (A/S/Q)? A

The unprotected files in the default user number and catalog on VOL1 are added
to VOL2. Any file on VOLZ having the same user number, catalog name, file name,
and extension as the file to be copied from VOL1 is replaced by the file from
VOL1.

NOTE

When the Y option is used, any destination volume f£file
which has file name and extension fields identical to
the file name and extension fields of a file on the
source volume, is deleted and replaced by the socurce
volume file, which could have different content. iIf a
choice of deleting or not is desired, the BACKUP command
using the A option alone should be used.

Example 6 - Track-by-track backup with contime

=BACKUP #FDO1,#FD02;UC
STARTING TRACK-BY-TRACK BACKUP PROCESS

3

The backup will go to completion even thcugh bad sectors exist on one of the
disks. This option is useful when dealing with disks that have known bad
sectors which are not being used or the user is attempting to salvage as much
data as possible. Anytime a bad sector is encountered, the data for that sector
on the receiving disk must be considered useless.

Each time a bad sector is encountered, the error message handler will report the
error. The record number field represents the sector that caused the problem.
If the command field says READ, the bad sector is on the input disk; a command
field of WRITE indicates the error was on the output disk.

Examole 7 - Append files starting with a specific file

=BACKUP SYS:99,VOL1:;AS
‘STARTING FILE-BY-FILE BACKUP PROCESS
COPY ALL FILES,SELECT FILES, OR QUIT (A/S/Q)? A
ENTER RESTART FILENAME (INCLIDING USER NUMBER)
93. . TEST.SA

A file-by-file backup of files under user mumber 99 with current default catalog
name will take place, starting with file S¥S:99..TEST.SA and continuing to the
end of the directory. This works with select files as well,

49




BACKUP

Example 8 - Append files (disk capacity exceeded)

=BACKUP VOL1:*.*,VOL2:*.*;
STARTING FILE-BY-FILE BACKUP PROCESS
COPY ALL FILES, SELECT FILES, OR QUIT (A/S/Q)? A
**QUTPUT DISK FULL** CONTINUE (Y/N)? Y
REPLACE OUTPUT DISK WITH NEW INITIALIZED DISK
ENTER THE NEW VOLUME NAME WHEN READY TO PROCEED VOL3

The file-by-file backup filled the first disk, and the user is given the chance
to mount another volume and enter its existing volume name. The new disk must
also have been initialized with INIT. (NOTE: The volume name cannot be changed
at this point, even if option R was originally selected. Also, the disk need
not be in the same drive). - If the hard disk drive needs to be spun down to swap
cartridges, this must be done after answering Y to ...CONTINUE (¥/N)? and
prior to entering the new volume name.

Example 9 -~ Selective backup by criterion

=BACKUP VOLL:*.*,VOL2:;

STARTING FILE-BY-FILE BACKUP PROCESS

COPY ALL FILES,SELECT FILES,OR QUIT (A/S/Q)? S

DO YOU WANT A DATE RANGE (Y/N)? Y

ENTER DATE RANGE FROM-TO (MM/DD/YY-MM/DD/YY) 5/20/80-2/15/81
or, if only one date is desired, enter 6/22/80

Files with a date before May 20, 1980 or after February 15, 1981 are not
considered for selection if other selection criteria exist, or are not copied if
date range is the only selection critericn. Only files on the source disk are
used for selection.

DO YOU WANT FILE/FAMILY SELECTION (¥/N)? ¥

ENTER FILE/FAMILY SELECTIONS ONE AT A TIME (UP TO 10).
HIT RETURN ON EMPTY LINE TO TERMINATE SELECTIONS.
ENTER NAME *.SA

ENTER NAME PAY.*

ENTER NAME 22..SYSTEM.SY

ENTER NAME CATB.*.*

ENTER NAME(CR)

NOTE

If volume, user number, or catalog is emitted from a descriptor, the
usual default is not used. Instead, the corresponding entry from the
input field of the command line is used (or *, for user muwber and
catalog, if a device was gpecified).

1‘;& following files are selected: All files with the extension SA; all files
with the file name PAY:; all files with a user mwmber of 22, the file name of
SYOrEM, and an extension of SY; and all files with a catalog name CATB.

4-10




BACKUP

A maximum of ten selections by family category can be specified. A file will be
accepted if it passes any of the ten selection-by-category tests. If the Date
Selection feature is active, the file must pass the date criterion before being
considered for selection according to the family categories. Note that criteria
expressed on the command line must also be satisfied. For example, had user #15
been specified on the command line, the entry CATB.*.* would not have cbtained
the descriptor VOLl:*.CATB.*.* as it does in the example as given, but the
descriptor VOL1:0015.CATB.*.*.

Example 10 - Selective backup by file descriptor

" =BACKUP VOL1:*.CAT1,VOL2:.CAT2;A

STARTING FILE-BY-FILE BACKUP PROCESS

COPY ALL FILES, SELECT FILES, OR QUIT (A/S/Q)? S
DO YOU WANT A DATE RANGE (Y/N)? N

DO YOU WANT FILE/FAMILY SELECTION (Y/N)? N

OK TO COPY (Y/N/Q)? VOL2:0915.CAT2.FILEL.SA ¥
OK TO COPY (¥/N/Q)7c..

All unprotected files of any user on VOLL having a catalog name of CATl are made
available for copying. Each file descriptor is displayed as modified for the
destination by the entries in the ocutput field.

Example 11 - Reorganized backup, hard disk to diskette

=BACKUP S¥S:915,SAVE: ;R

WARNING--INPUT DISK IS LARGER THAN OUTPUT DISK

STARTING FILE~-BY-FILE BACKUP PROCESS

COPY ALL FILES, SELECT FILES, OR QUIT (A/S/Q}? A

ENTER NEW VOLIME NBME SAVZ

ENTER DESCRIPTION (MAX 20 CHARACTERS) PASCAL STUFF

THE QUTPUT IS VOL = SAVZ USERE = 0317 DESC = PASCAL STUEF

Volume SAVE is initialized (all files on it are lost). Its volume ID becomes
SAV2, its user number becomes the user's current default (317), and its
description becomes PASCAL STUFF. All user number 915 files on SYS: under the
user's default catalog are then copied to SAVZ under the user's default user no.
(317) and catalog.

411







4.2.2 Build S-Record Utility (BUILDS) BUILDS

The BUILDS utility transforms a binary load module into a file of ASCII-encoded
information which may then be transported to another system for further use.
The format of the records in the file is Motorola S-record, so called because
each record begins with a byte containing the code for an ASCII "S" -- for start
of record.

The ASCII (American Standard Code for Information Interchange) code is commonly
used to represent information being transported between systems or contained in
the various storage media. The alphabetical character "H", for example, is
represented by the hexadecimal number 48 in ASCII. Any means of representing
"48" which suits the particular nature of a transmission or storage medium can
now be used, and the information inherent in the original “H" will be preserved.

The types of S-records generated by BUILDS are:

S0 Starting record. Contains task name.

Sl Data record for block starting at address that fits in 16 bits.
62 Data record for block starting at address that requires 24 bits.
S8 Ending record if program start address requires 24 bits.

59 Ending record if program start address fits in 16 bits.

Refer to Appendix A for additional information on the makeup and function of
S-records.

BUILDS Command Syntax

BUILDS <input field>{,<output field>]
where:

inmput field Is the descriptor of the lcad module file. A minimum of the
file name field is required. .LO is the default extension.
Beginning with version 4.0 of VERSAdos, BUILDS accepts .SY
files. J.LO was the only allowable extension for previous
versions.

output field Is the descriptor of a file in which the generated S-records
are to be stored. If not specified, the extension will be
Mt. If an output field is not specified, the generated
S-record file is stored on the default volume under the input
field file name with extension of .MX.



BUILDS

Build S-Record Utility Examples
=RUILDS PAYIN.LO,PAYREC . XY
VERSAJos searches the default volume, user number, and catalog for PAYIN.LO. A
file of S-records is then created from the load module code. The file is stored
on the default wolume under the name DPAYREC and is given the specified
extension .XY.
=BJILDS PAYIN,PAYREC
VERSAdos searches the default volume, user number, and catalog for PAYIN,
assuming an extension of .LO. BUILDS then creates a file of S-records and stores
it on the default volume under the specified name PAYSREC, supplying a default
extension of .MX.
=BUILDS PAYIN
VERSRdos searches the default volume, user number, and catalog for PAYIN,
assuming an extension of .LO. BUILDS then creates a file of S-records and stores
it on the default volume under .the default name PAYIN, supplying a default
extension of .MX.
If the imput file is empty, the message
LOADMODULE IS BMPTY
is displayed. The resulting .MX file will have nothing in it.
If a file by the same name as the output file name already exists, the question
FILE EXISTS - OK TO OVERWRITE (¥/N)?
is displayed. Entering Y will cause BUILDS to replace what is currently in the

file with the usual S-record output. Entering N will cause BUILDS to stop
without changing the existing file.

4-13






4.2.3 Connect Utility (CONNECT) CONNECT

The CONNECT utility allows the user at a terminal on a VERSAdos system to
communicate with a second computer which is connected to a second port. It
produces the same effect as physically disconnecting the terminal from the
VERSAdos system and connecting it to the second computer, without having to
touch &'y cables.

CONNECT Command Syntax

CONNECT <device name>[,<exit character>]{;L[=<{line $>]]

where:

device name specifies the device name of a second terminal port.

exit character specifiss a character which, when entered, allows the
user to discontimue the CONMNECT mode. The default exit
character is CTRL-V. To select a different exit
character, enter any alphabetic character (A to 2Z) in
this field. The exit character then becomes the
corresponding control character (CTRL~A to CTRL~Z).

line # specifies the line on which the CONNECT reminder message

should be displayed. This option is functional only
when COMNECT is invoked from an EXORterm 155 or VME/10.
The default is line 25. A different line may be
specified by entering the appropriate number, from 10 to
25, in this field.

EXORterm 155 and VME/10 users may utilize the L option to achieve a friendlier
interface. When L=n is specified, CONNECT performs the following functions on
the terminal from which it was invoked before connecting the terminal to the
other port.

a. Reset of the display screen.

b. Set up of the virtual screen (i.e., the area which scrolls while in
CONNECT mode) as lines 1 through l-n.

c. Display of the following message on line n:
CONNECTed to #CNxx -- type CTRL~x to exit.

The CONNECT utility logically short circuits two ports —- the port to which the
user's terminal is attached and the port specified in the first argument on the
command line. All characters and break signals entering the first port are sent
to the second port instead of following normal VERSAdos channels. Conversely,
characters and break signals entering the second port are sent directly to the
user's terminal port.

To discontinue the CONNECT mode of operation, enter the exit character from the
terminal on which CONNECT was invoked.

4-14



COMRECT

Only the system administrator (user 0) can invoke the OONMECT utility, because
it uses privileged operating system calls. Purthermore, COMMECT may be run only
if both ports used fall into the following categories:

VWE/LO keyboard and display screen
V02 local ports
MVME400 ports

COMNECT is not supported for other serial ports.

COMNECT may be invoked from a chain file. Because the computer expects to
receive input from a terminal whenever CONNECT mode is invoked, it continues to
do so even when invoked from a chain file. Therefore, imput is taken from the
terminal from which the chain file was invoked, rather than from the chain file.
COMNECT will not work when executed in batch mode.

COMNECT Utility Examples

Example 1

=CONNECT #CN02 The: user's terminal is comnected to the device
attached to port #ON02. CTRL~V will exit from
COMNECT -

Exanple 2

=CONNECT $CNOL,X The user's terminal is comnected to the device
attached to port #(N0l. CTRL~X will exit COMNECT.

Example 3

=C0MNECT $CN01;L=24 The user's temsinal is comnectad to the device

attached to port #(N0l. CTRL-V will exit CONNECT.
The reminder message is displayed on line 24 as
follows:

COMNECTed to $CNO1 — type CTRL-V to exit.

4-15







4.2.4 Copy Utility (COPY) CopY

The COPY utility copies a file onto the same volume under a new file name or
onto another volume under the same or a new name. No data conversion is
performed. Options to the basic command allow a file to be appended to the end
of an existing file, packing of data in an indexed sequential file, character-
by-character comparison of existing files with display of byte differences
within records, and character-by-character comparison of a copied file and the
original with display of byte differences within records. COPY output can be
directed to the system printer.

COPRY Command Syntax

COPY <input field>,<output field>[,<list field>][;<options>]
where:
input field May be any file name or device name.
autput field May be any file name or device name.
list field May be & file name or device name.
options May be &, B, N, P, ¥, V, or Vv andhi‘r, as follows:

A - Append option. Causes the file specified in the
input field to be appended to the end of the file
specified in the output field.

B - Copy Verify option. Causes the output field file to
be created from the inmput field file, and then
compared against the imput field file.

N - This option will automatically bypass copying an
input field file to an output field file if the
output field file already exists.

P - Pack option. Specifies that all unused space within
an indexed sequential file is to be reclaimed,
thereby generating tightly packed output files
requiring less disk space.

Y - This option will automatically overwrite output
field file names that currently exist.

V - Verify option. Verify-only function which causes
the output field file to be compared against the
input field file. Differences, when found, will be
displayed.

T - This option, which can only be used with the V
option, will output only the first difference
ancountered for a given record.

Any copy reguest that contains an invalid option will result in display of the
appropriate status message, task termination, and display of the HELP panel.

4-16



Copy Utility Examples - Single Volume Operations

Example 1 - On the same volume, duplicate a file and give it a new name.
=COPY VOLZ:..INDX.CF,NINDX

When executing this command line, the operating system assumes default values
for user number and catalog name and uses the default wolume for the output
field volume ID. If the default user owns INDX.CF (or is system administrator),
the file is rewritten on the disk called VOL2 under the new name NINDX. The
extension of the imput field file, .CF, is supplied. The input field file
itself is unchanged.

& comparison of the copied file with the original can be obtained by specifying
option B. The command line would then be:

=00PY VOL2:..INDX.CF NINDX:B

If the output field file (the file must exist) and input field file require
comparison, but no copy function is desired, option V is used. A valid
comparison is indicated by the return of the system prompt (=). Otherwise,
differences between the two files are displayed as described below.

A listing of differences can be obtained only by using the V or B option, with
the output directed to the printer as follows:

=COPY VOL2: ..INDX.CF,NINDK,#PR;<option>

Figure 4~1 shows a typical example.

Listing of Fie § Listing of Fils 1
el1l2]|3je—o0ttset 3 el1l2]s|le—0ttset 3
SOOG090.46!44!52}!B«-——Rocord'-—-’s. nu!a4l4sl21

€66 1

P
o
e mme
B e @
@ a0 o 0

$ 1!1 3‘0 El4 0!. 0'2 .g. .i' @e—Recordf—=35 1!1 3!3 7%_%__’::%0 i%. cte (LR

the byte offset 3 from start of record
LN al
RECORD 8 OFFSET 3 FILE® 4€ FILET 37 F7
{‘RECORDS t2 NOT SAME LENGTH

{Typics! messages resulting from uee of ¥ or B option with COPY command.)

FIGURE 4-1. OOPY Compand Example

417



169)23'4

le 2 - On the default volume, append one file to a second under the name of
the second file.
=COPY INDEX.CF XREF.CF:R
Default val es for volume name, user number, and catalog name are assumed. If
the proper file ownership exists, INMDEX.CF is affixed to the end of file
XREF.CF, as requested by the specified A option. INDEX.CF is unchanged.
Note that the append option reguires that all files appended be of the same type
and attributes.

le 3 - On the same volume, copy an existing indexed seguential file to a
new file name, but pack the file.
=COPY ERRORMSG.SA ,SAVE .ERRORMSG.SA;P
Default valuves for volume, catalog, and user menber are assumed. The system
will search the default volume for the input field file and copy it to the

output field file, packing it so that minimmm disk space will be used for the
output field file.

Copy Utility Examples - Two Volume Operations

Example 4 - Duplicate a file under the same file name on another volume.
=COPY INDEX.SA,VOL2: '

Default volume ID, user mumwber, and catalog name are assumed. The system
searches the default volume for the specified file. If proper ownership exists,
an identical file is created on VOL2 under the imput field file name, INDEX.SA,
which is itself unchanged.

le 5 - Verify two files on different volumes, creating a file of
differences to list and save.

=C0PY XREF1.LO,VOLl:. XREF2.LO,POUT.SA;V

Default values are assumed for volume ID, user mumber, and catalog name. The
system searches the default volume for the source file. WVOLL is searched for
the destination file. Character-by-character comparison reguested by the V
option is performed and differences placed in a new file named POUT.SR on the
default volume, user mmber, and catalog.

k listing of this file of differences can now be obtained. Although the COPY
compand could be used, a better method is to use the LIST command because it
provides formatting and pagination, and skips perforated folds. The command
line would be:

=LIST POUT.SA$#PR

4-18




Copy Utility Examples - Single Volume Cperations

Example 1 - On the same volume, duplicate a file and give it a new name.
=COPY VOL2:..INDX.CF,NINDX

When executing this command line, the operating system assumes default values
for user number and catalog name and uses the default volume for the ocutput
field volume ID. If the default user owns INDX.CF (or is system administrator),
the file is rewritten on the disk called VOL2 under the new name RINDK. The
extension of the imput field file, .CF, is supplied. The input field file
itself is unchanged. . :

A comparison of the copied file with the original can be obtained by specifying
option B. The command line would then be:

=C0OPY VOL2:..INDX.CF,NINDX;:B

If the ocutput field file (the file must exist) and input field file regquire
camparison, but no copy function is desired, option V is used. A valid
comparison is indicated by the return of the system prompt (=). Otherwise,
differences between the two files are displayed as described below.

A listing of differences can be obtained only bv using the V or B option, with
the cutput directed to the printer as follows:

=C0PY VOL2: ..INDX.CF,NINDX,$#PR;<option>

Figure 4-1 shows a typical example.

Listing of File Listing of Fiie 1
el1|2|al—0ttset 3 e|1]l2|3le—0tiset 3
nooioualusus‘———necordo—-scun1114!94!¢5Iz1

s$e

s 1!1 3I| El4 630 0!2 .ll .t. @+—Record&—=$ 1‘1 3!3 7‘3 TIC .i. !IB .l. L

the byte offset 3 from start of record

|

RECORD 68 OFFSET 3 FiILEG® 46 FiILEY 37 F7
[BEGOHDS 12 HOT SAME LENGTH

aymmmmmmummmv“ammcowmm.;

FIGURE 4~-1. COPY Command Example

4-17




;
|
]
|

COPY

Example 2 - On the default volume, append one file to a second under the name of
the second file.
=C0PY INDEX.CF,XREF.CF;A
Default values for volume name, user number, and catalog name are assumed. If
the proper file ownership exists, INDEX.CF is affixed to the end of file
XREF.CF, as requested by the specified A option. INDEX.CF is unchanged.
Note that the append option requires that all files appended be of the same type
and attributes.

tample 3 - On the same volume, copy an existing indexed sequential file to a
new file name, but pack the file.
=COPY ERRORMSG.SA,SAVE .ERRORMSG.SA;P
Default values for volume, catalog, and user mumber are assumed. The system
will search the default volume for the imput field file and copy it to the

output field file, packing it so that minimuom disk space will be used for the
output field file.

Copy Utility Examples - Two Volume Operations

Example 4 - Duplicate a file under the same file name on another volume.
=COPY INDEX.SA,VOL2:

Default wlume ID, user mumber, and catalog name are assumed. The system
searches the default volume for the specified file. If prover ownership exists,
an identical file is created on VOL2 under the input field file name, INDEX.SA,
which is itself unchanged.

le 5 - Verify two files on different wvolumes, creating a file of
differences to list and save.

=C0PY XREF1.LO,VOL1:..XREF2.LO,POUT.SA;V

Default values are assumed for volume ID, user number, and catalog name. The
system searches the default volume for the source file. WVOL1 is searched for
the destination file. Character-by-character comparison requested by the V
option is perxformed and differences placed in a new file named POUT.SA on the
defavlt volume, user mumber, and catalog.

& listing of this file of differences can now be obtained. Although the COPY
command could be used, 2 better method is to use the LIST command because it
provides formatting and pagination, and skips perforated folds. The command
line would be:

=LIST POUT.SA,#PR

4-18




QoPY
Example 6 - Copy an existing file to the specified output file, but change the
protect codes on the output file.
=200PY TEST.SA,TEMP .SA(ARBB)
Default values for volume, user number, and catalocg are assumed. The file

TEMP.SA will be identical to TEST.SA but its protection code will have been
changed.

QOPY Utility Examples - Use of the * Character

The * (sometimes referred to as the "wildcard®™) can be used t0 represent one or
more characters within a file descriptor field or tc represent one or more
entire fields. Its general meaning is “any" or "all® of the element it
represents. As an entire field or fields, the asterisk can be used in the
source or destination of both file descriptors. There must be a one-to-one
source destination correspondence of asterisk-represented fields. When the
asterisk is used to represent one or more characters within a field or fields,
however, it must appear in corresponding character positions in like fields in
the other file descriptor. If the asterisk appears at the end of a field, it
can represent zerc or more contiguous characters. If it does not appear at the
end of the field, it may represent only one character. It is illegal to copy
with family mode specified in the imput field and a device in the cutput field.
Only family type copy and/or verify reguest wiil cutput a status message as to
the number of files copied and/or wverified unless an error occurs.

Example 7 - Asterisk used for catalog, file name, and extension fields.

=COPY FIX:22.%.% % ,FIX:24 % * . %;B

All files on volume FIX: belonging to user 22 are copied to user 24 and then
verified. Note that when copying between user mumbers, the default user number
(supplied at logon or with the USE command (paragraph 2.3.1)) must be the
destination user mmber. In other words, in the above example, user 24 may copy
user 22's files (unless protectzd); but user 24 may not copy his files to user
22. However, user 0 may copy files between any two user nurbers.

EXample 8 ~ Asterisk used for extension fields.

=C0PY WORK.* ,PAY.*

Default values are assumed for volume ID, user mmber, and catalog name. All

files named WORK with any extension are copied under the name PAY and given the
corresponding extension.

4-19




QOPY

Example Y - Asterisk used for non-specified following characters.
=COPY ST%.% ,GO* *

Default values are assumed for volume ID, user number, and catalog name. All
files of any extension whose names start with ST (regardless of following
characters) are copied under corresponding new names starting with GO and having
correspording extensions.

Example 10 - Asterisk used for beginning characters.
=CORPY **CSBUG.* ,**XBUG.*

Default values are assumed for volume ID, user number, and catalog name. All
source volume files of any extension with names beginning with any two
characters and ending with CSBUG are copied te the destination file under names
corresponding in the first two characters but ending in XBUG. Dest.ination
extensions also correspond to source extensions.

Example 11 - Use of asterisk to change catalog name.
=C0PY CATAL.*.*,CATAZ.* . *

All source files under the catalog name CATAL are copied on the destination
volume under the catalog name CATAZ2.

The following dialog typifies use of the COPY commarnd with the verify option:

=Q0PY Ck.*,F* . *;B
COPY ALL OR SELECT FILES (A/S) ? A
S¥S:24 . .FOBOL.LO
START VERIFY
FILE 1 SYS:24..COBOL.LO
FILE 2 S¥S5:24..FOBOL.LO
SY¥S:24. . .FVT.RO
START VERIFY
FILE 1 5¥S:24..CVT.RO
FILE 2 S¥S:24.. FVT.RO

2
2

FILES COPIED
FILES VERIFIED

[

4-20







4.2.5 Delete Utility (DEL) DEL

This utility removes a file name from a disk directory and frees all space
allocated to that file. A single file, a list of files, or a family of files
with the same file descriptor parameters can be deleted by erecutiryg a single
command. For later reference, a listing file containing displayed .ixessages as
DEL executes can be created.

DEL Comvmand Syntax

DEL <input field>[,<output field>][;<option>]

where:
input field May be any file name(s) or device name(s), such as
NAME-1 [ /NAME-2/NAME-N] .
output field May be any file name or device name. The default value is
the session terminal. If a fle is specified without
extension, the default is .LS.
option ¥, which automatically deletes all files in a family without

prampting the user about each file.

Delete Utility Examples

Example 1 - Delete specified files.
DEL TEST1.SA/TEST2.SA

Default volume ID, user number, and catalog name values are used to find the
files specified in the input field. A message is displayed indicating the
deletion of the specified file when deletion is selected:

DELETED VOL:21..TEST1.SA
DELETED VOL:21..TEST2.SA

Deletion involving the family notation allows the user to delete all files that
satisfy the user family request. The user can request automatic deletion of all
files or prompting of each individual file satisfying the family request by
respectively selecting or not selecting the Y option. If the user regquests
prompting of each individual file, he will be given the opportunity to delete
the existing file (Y), to bypass deleting the existing file (N), or to terminate
the deletion process (Q).

Unless otherwise specified, the default volume, user number, and catalog will be
used in the deletion process.

4-21



DEL

Example 2 ~ Delete all *.SA files, requesting a prompt for each file.
DEL *,.SA,#PR

In this example, the user will be prompted for each file satisfying the family
request. The confirmation message for each file selected for deletion will be
directed to the printer.

OK TO DELETE (¥/N/Q) VOL:21. . TEST3.SA Y
OK TO DELETE (Y/N/Q) VOL:21. .TEST4 .SA N

The confirmation message "DELETED VOL:2l..TEST3.SA" -- where "VOL:21.." is the
default volume, user number, and catalog -- is then output to the printer.

Example 3 - Automatically delete all *.LO files.
DEL *.LO;¥

In this example, automatic deletion of all *.LO files belonging to default user
nunber 14 on the default volume SYS, under default catalog "blank", will occur,
with the confirmation message being shown on the requesting device. For

example:

DELETED SY¥S:14..PATCH.LO
DELETED SY¥S:l14..TEST.LO
DELETED SY¥S:14..LIB.LO
DELETED S¥S:14..DIRECT.LO

422






4.2.6 Directory Utility (DIR) DIR

Information describing the disk space allo~ation, location, and other attributes
of each file in a volume are stored in the wolume directory. Part or all
information entered for a file can be obtained through use of the Directory
utility. The basic command obtains complete file names under the default
volume, user number, and catalog established at logon or with USE (paragraph
2.3.1), and four options (used alcne or in combination) provide greater file and
volume detail.

DIR Command Syntax

nir (<inpur field>] [, <output field>][;<options>]
where:

input field May be any file name or device name.
output field May be any file name or device name.

options Z - The Z option outputs the names of all files controlled
by the default user number and user number 0.

E - For any file name specified in the input field, the E
option outputs all directory information (file type,
data block and FAB sizes, update and access dates, and
file's starting physical sector number).

A - For any file name specified in the input field, the A
option outputs all directory information, plus the
physical sector numbers of all FAB's and data blocks of
the file. vValid for wvolume owner or system
administrator.

NOTE

Only the system administrator can use the DIR
utility with the A optiocn on a system volume.
Others will get a PROTECT CODE ERROR and the
E option will be used.

S - The S option is provided as an aid to the user working
with a large number of files on a volume. It arranges
the DIR command output according to user number, catalog
name, file name, and extension, and may be used alone or
in combination with the A, Z, or E option.

Sufficient memory is allocated to sort 20¢ (the default
value) files. Should a number creater than this be
encountered, the message FILE COUNT EXCEEDED - RETRY
WITH LARGER °S' OPTION is displayed. The user may
respond by invoking the command as before, but with a
specified nurber of files in the options field -- for
example, ;5=300 -~ in which case up to 300 files could
be sorted. A number close to the actual number should be
used since a larger risk of exceeding available memory
exists with larger nunbers.

The message NOT ENOUGH MEMORY FOR THIS 'S' OPTION might
be encountered when usirg the S option. In this case,
the user may reduce the number specified in the S
option, or try again when memory is freed on completion
of others tasks.

4-23




DIR
Directory Utility Examples

Example 1 - Display default catalog files alphabetically.
=DIR ;8 Mull input and output fields.

DIR VERSICN 111781 2 6423482 39:5Q:37

EIN:0021..EXARD 2. RO
FIX:00271..E%X4HUP2 54
FIX:0021..EXORSTAT.S4
FIN:0021..FORCE. RO
FIX:0021..PASCALIBLRO
FEIX:0021c«PASPROGLLOD
EIX:0021..SCRY.KO
FIX:0021..50RT, 54

NUMBER FILES RETRIEVYED = &

Default user volume ID, user number, and catalog name values are used for the
corresponding mull fields within the command line input field. Output defaults
to the system temminal, which displays the complete descriptor of each file
belonging to the default user, with the default catalog name, on the default
volume. File names are arranged in alphammeric order.

Example 2 ~ Use of “wildcard" to obtain all catalogs.
=DIR VOL2:.* ,#PR1;S

DIRTVERSION 111781 3 6728782 11:59:38

V0L2:0021AFILE.SA
¥OLE:002Te c MNEMOKRS o TX
¥042:0021..TEST2.L0
VOL2:0321.PUBS. MNEMONSSA
V0L.2:0021.22.5AKPLE. SA
¥CL2:00271.22.TESTLLO

NUMBER FYLES RETRIEVEC = é

In this example, the "wildcard" asterisk {*} is used in the catalog field to get
a directory of all files belonging to the default user on all catalogs on volume
VOL2. The S option causes alphabetic listing, and output is directed to printer
$PR1L.

4-24




DIR

Example 3 - Minimum command, 2 option (obtains user 0 and logon user file names
from default volume).

=DIR ;2 Null imput and output fields, % option.

CIR VERSION 111731 3 €/28B422 39:51:50

EIX:0000eeIPLLSY
FIX:0000..0U%P.SY
EIX:0CJ0..I0E.54
FIX:00D0. VERSALCSHLSY
FIXN:QO0000TASKIUMP,SY
EI%:3030..4CCT.L0
FIX:000C. ASH.LO

®
-
®

EIX:0000..SPLGUEUE.SG
FIX:0021..PASCALIB.RO
FIN:0021..EXORSTAT . SA
FIX:0021..EXAMPE.SA
FIN:0021..S0RT.SA
BIX:0021..50RT RO
FIX: 0021 FORCE.RC
FI:0021..PASPROG.LO
FIX:002%c-EXAMPL.RO

WUYBER PILES RETRIEVED = 1&9

pefault volume ID, user mumber, and catalog name values established at session
initiation or with USE are supplied by VERSAdos for the corresponding null
fields within the command input field. Output defaults to the system terminal,
which displays the names of all files on the default volume controlled by the
logon user and user mumber 0.

Example 4 -~ Directory information for a specified file.

=DIR SORT.SA #PR;E File name input field, E option (contiguous file),
device name output field.

JIR VERSICK 111781 3 6728782 11:68:57

FIN:00210.PASPROGLLD

LOS % OF REC KEY FaB 0B Cave UARTE
STARY EnD E0F RECORES ®wC RC FT LEN LEN LEN LER CHARGED ACCESSED
$taesz $t1asac - - pE PP C - - &f2e/82 &/28/782
NUMBER FEILES RETRIEVED = 1

4-25




DIR

=DIR PASPROG.LO;E File name input field, E option (seguential file)

DIR VERSION T1117et 3 6/28s82 09:53:24

FIR:0021..S0RT.54
L0G & QF REC KEY Fa3y 03 OaTE DaTe
START END EQF RECORIS wC RC FY LEN LEN LEN LEN CHANGEZ ACCESSED
$14698 $T14496 4 101 LU 4 s g Q 1 & 6/26/782 6726482
NUMBER FILES RETRIEVED = 1

In both examples, default values are used for volume, user number, and catalog.
In the first example, output is directed to a printer. The E option results in
the display or printout of the following information:

START Starting and ending sectors of the specified file(s).

END Useful only for contiguous files, as seguential and indexed
sequential are shown with the same sector number for start
and end.

LOG EOF Logical sector mmber in which the file ends (noncontiguous
files).

# OF RECORDS Number of records im the file (noncontiguous files).

WC Write protect code.

RC Read protect code.

FT File type: ID=indexed seqguential. C=contiguous, S=sequential

REC LEN Record length {noncontiguous files); if 0, then variable
length records.

KEY LEN Length of keys (noncontiguous files).

FAB LEN Muatber of sectors in File Access Block (noncontiguous files).

DB LEN Data Block size in sectors (nomcontiguous files).

DATE CHANGED

DATE AOCESSED

MOTE: Refer to the VERSAdos Data Management Services and Programs Loader User's

Mamual, RMS68KIO, for further description of key length, FAB's, and DB's.

4-26




,
;
:
5
1

e
:
.
F

DIR

M - D:;zl:ctozy and disk space allocation information for a specified
file.

=DIR VOL2:2]1 .PUBS MNEMONS .Sh; A A option (noncontiguous file).

ora vERSION 111721 3 €f28082 1I:032362
v0L2:0021.PUBS MUENTRS . SA

.06 & OF REC KEY FAS D3 DAYE DATE
STaRY Eud ECF HECORDS wlC REC FY LEN LEN LEM LEN CHANGED ACCESSED
$36 $24 12 166 BP PP IO ¢ 1] 1 & e6/28/82 6728782
Fag PSH CaTa START & REC & SECY OATA START # REC ® SECT
$3é $2¢ @ 1 §35 68 8
$30 13 2 $45 72 8
SIiE 337921
TOTAL SIZE 337821
NUKBER FILES RETRIEVED = t

For the specified noncontiguous file, option A provides the starting sector of
each data block, the number of records held by each data block, and the number
of sectors used by each data block, in addition to the information provided by
the E option. Output defaults to the system terminal.

Example 6 - Volume ID display.
=DIR $FD10 Device mumber input field, null output and option fields.
DEVICE FO10 IS YCLUME WOL2

USER mumus= 0021 DESC= EXCR®ACS

VERSAdos determines the voiume ID, user mumber, and description of the diskette
in the specified drive, and outputs this information to the default system
terminal.

27




DISMOUNT




|
|
|
|
|

4.2.7 Disk Dismounting Utility (DISMOUNT) DISMOUNT

This utility performs the complementary function to the MOUNT utility. It
forces the operating system to release control of a mounted VERSAdos disk and
sets the driver to reject all I/0 requests for the device until a new MOUNT
command is issued. Dismounting of a foreign disk also sets the driver to reject
all I/0 requests for the device. DISMOUNT is not functional on EXORmacs
Development Systems.

NOTE

The DISMOUNT utility is neither necessary nor allowsd for disks connected
to the IBPC controllers —- i.e., VERSEmodule Floppy Disk Controller (FDC),
ME8KWZ0, and VERSAmodule Universal Disk Controcller (UDC), M68KVMZL.

DISMOUNT Command Syntax

DISMOUNT <input field>
where:
input field 1) Is a disk device mnemonic of the form #HDcd (hard disk)
or
#FDcd (floppy disk)
where ¢ specifies a SYSGEN-specified controller number
d specifies a SYSGEN-specified drive number
or

2) Is a VERSAdos volume name consisting of one te four
characters of the form xxxx:

where the first character is alphabetic and the remaining
characters are alphanumeric.

For VERSAdos disks, the volume name and device mmemonic are interchangeable on
che conmand line. For foreign disks, the device mnemonic must be specified.

Dismounting Disks

Follow the steps below to dismount a disk.

a. Take the drive offline. For floppies, this is done by opening the drive
door and removing the diskette. For hard disks, the procedure is
drive-dependent. Consult the manufacturer‘s instructions.

b. Invoke the DISMOUNT utility as described earlier.

In normal operation, the only output that should be generated is the utility
sign-on messade.

=DISMOUNT $FD02
DISMOUNT Version xxxxxx X

=DISMOUNT TEST:
DISMOUNT Version xaxxxx x

4-28






4.2.8 Dump Utility (DUMP) DUMP

During program development or problem investigation, it is often useful to
examine the contents of portions of a file or volume. The DUMP utility provides
the user with this facility.

Memory contents are "dumped" in compact hexadecimal form to the terminal or,
optionally, are directed tc the printer or to another file. Displayable ASCII
characters are shown separately.

The basic command provides display of the contents of all the logical sectors
comprising a specified file. An option to the basic command allows the starting
and ending logical sector numbers of a portion of a file to be specified.
Instead of a file name, a physical device name or volume name can be specified
in the command input field in order to dump from disk to console or, optionally,
from disk to file or from disk to printer.

Also provided is an interactive level under which the DUMP utility maintains
control after execution of the initial command line. This level allows file
portions to be dumped or changed one by one without entering the complete
cammand line for each portion.

DIMP Command Syntax

DUMP <input field>!.<output field>][;<option>]
where:

input field May be (1) any file descriptor (minimum of file name and
extension field required), (2) any device name, or (3) any
volume name.

output field May be any device or file name.
option May be one of the following:
S=nn , T=pm or I

where: mn represents the logical sector number of the
starting sector. If S=nn is not specified, mn
defaults to zero.

mn represents the logical sector number of the ending
sector. If T=mm is not specified, mm defaults to the
last sector number of the file.

Each logical sector mumber (nn or mm) is an up to
8-digit number expressed in decimal or, if preceded
by a dollar sign, hexadecimal representation.

NOTE

Sector numbers are physical when only device
or volume name is given as <imput field> on
the command line.

4-29




DoMP

I causes entry into the DUMP utility interactive
level. When execution of the DUMP command line is
initiated and this level is entered, a greater-than
symbol (>} prompt is displayed. Following the
prompt, interactive level subcommands may be entered,
as described in the following paragraphs. If the I
{interactive) option is selected, all other normally
valid options which were specified on the command
line are invalid. If other wvalid options were
specified, the following message is displayed:

OMLY ‘I OPTION PROCESSED

Quit Dump Subcommand Syntax (QUIT)

>Q[UIT]

where:

Q or QUIT

Is the subcommand for quitting the DUMP utility and returning

control to VERSAdos.

Dunp Specified Sectors Subcommand Syntax (D)

>D <starting sector>, [<ending sector>]

where:

D

starting sector

ending sector

Is the subcommand mnemonic for dumping a specified portion of

a file.

representation.

Is a sector number within the file/device specified when the
interactive level was entered. The number may be expressed in
decimal or, if preceded by a dollar sign ($), in hexadecimal

representation.

Dump Succeeding or Preceding Sector Subcommand Syntax ()

>["1(CR)
where:

(CR)

“(CR)

Carriage return only dumps the next succeeding sector.

Circunflex (hex 5E), followed by a carriage return, dumps the

previous sector.

4-30

Is a sector number within the file/device specified when the
interactive level was entered. The number may be expressed in
decimal or, if preceded by a dollar sign ($), in hexadecimal




DUMP

Provision has been made within the DUMP utility for changing a file. The
contents of a specified sector may be read into a sector change buffer,
modified, and written back to disk. Modification is performed in a manner
similar to the technigue used in the PATCH utility except that DUMP does not
recognize assewmbler mnemonics. The general procedure is:

a. The I option is specified on the DUMP command line to enter the
interactive level.

b. The contents of a sector are read into the sector change buffer, using
the R subcommand.

c. The M subcommand is used to enter the change mode and display a
particular starting byte. On the same M subcommand line, the desired
change is effected, using one of the PATCH utility change modes.

d. When the buffer contents are correct, typing a period {(.) returns to the
DUMP prampt (), znd then the W subcommand is used to write out the
sector to disk, thus making the actual change to that sector in the file.

Two additional subcommands, S and F nn, are provided in the interactive level.
S allews the sector change buffer contents to be displayed. F nn allcws the
buffer to be filled with any one byte value of the user's choice.

Subcommand Syntax (R)

>R nn
where:
R Is the Read subcommand mmemonic.
nn Are one or more digits (decimal assumed unless preceded by §$).

Execution of this command causes the logical sector mn of the file, device, or
volume specified on the DUMP command line to be read into the sector change
buffer.

4-31




Fill Subcomand Syntax (F)

>F nn
where:
F Is the Fill subcommand mnemonic.
nn Are one or two digits (hexadecimal assumed).

Execution of this command f£ills euach byte in the sector change buffer with the
hex digits nn.

Show Subconmand Syntax (S)

>8
where:
[ Is the Show subcommand mnemonic.

Execution of this command displays the contents of the sector change buffer.

Enter Change Mode Subcommand Syntax (M)

>M m
where:
M Is the Enter Change Mode subcommand mnemonic.
nn Are two digits (hexadecimal assumed) .

Execution of this command causes entry into the change mode at the byte offset
nn from the start of the sector change buffer. The specified byte is displayed
and, on the same command line, changes to the buffer may be effected (starting
at the byte displayed), exactly as described for the PATCH utility. Byte
offsets are analagous to addresses as described in the PATCH utility. Changes
can be made only within the boundaries of the current sector change buffer. The
change is applied to disk only after execution of the W subcommand.

4-32



Write Subcommand Syntax (W)

>W [nn]
where:
W Is the Write subcommand mnemonic.
nn Is a one-or-more digit sector number (decimal assumed unless

preceded by $) .

Execution of the W command without a sector number may be performed only after a
sector change buffer has been read. It will write the current contents of the
sector change buffer back out to the sector from which it was originally read.

Bxecution of the W nn command writes the current contents of the sector change
buffer to sector nn. Unlike the W subcommand given without a sector number,
W nn may be used even if the sector change buffer has not yet been read in. The
initial content of the sector change buffer is all zeros. This may be modified
by reading a sector into the change buffer, using the M nn subcommand to set
specific bytes in the change buffers, or using the F nn subcommand to £ill the
change buffer with constant byte values. In every case, the W nn command may be
used. This form of the W command may not be used on non-contiguous files.

Cut Subcommand Syntax (0UT)

>0UT <name>

where:
ouY Is the Out subcommand mnemonic.
name Is a file or device name.

Execution of this subcommand directs the listing to the name specified. <name>
may be a file or device. The listing will continue to be directed to <name>
until another Out subcommand is executed.

4-33




HELP Subcommand Syntax

>HELP

Execution of this subcommand causes the following display:

Legal options in interactive mode are:

'D S,
<CR>
KR
'R S
g

F g

|H S'

IWI

IW Nl

'OUT NAME'

'QJIT'

To dump from sector S to sector T; a leading 'S$* implies hex.
To dunp the next sector in succession.

To dunp the previous sector.

To read sector S into change buffer.

To display the sector change buffer.

To £ill the sector change buffer with 8; S is assumed to be l-byte
hex.

To enter change mode at offset S; S§ in the range from 0 t~ FF
(always hex).

To write the previously read sector change buffer.

To write out to sector N a change buffer that has not previously
been read in. Cannot be used with non~contiguous files.

To redirect listing to file or device name.

To quit.

DUMP Utility Examples

The listing below resulted from the following procedure.

=DUMP PATCH.LO,# Executing this line produces a scrolled display which

may at any time be stopped by keying in CIRL~-W. It
may be restarted by pressing any other character.

=[¥MP PATCH.LO,4PR; 1 The interactive mode is called and the printer is
attached.
»D $C,$D Executing this line lists the specified sectors and

" (othexr file portions may returns the interactive mode prompt.

‘be dumped similarly)

ANIT

DUMP is exited and control returned to VERSAdos.

4-34




puMp

Had the sectors of interest been known initially, the listing shown in Figure
4-2 could also have been produced without entering the interactive mode. The
command line would be:

DUMP V¥ER3IION 121189 3 2726482 18:264:42 DUMP CF ®IX:(0..PATCH.LC

0aQ
10
29
20
4C
50
60
73
1Y)
70
as
30
ce
9
€0
F3

SN=§C 12
0C 40 00 30 60 14 0C 1C 0C 39 ¢3 CC 0C 10 00 41 scolUMecacPCacnch
40 0Ot OC 12 00 46 ét 08 §2 88 B1 C9 éF £2 42 290 m.'.an‘ROQCODS.
20 8F 48 BC 4% 75 4B AE 01 o8 66 0O FD E 2D 7¢C -JaNUJ.Qafo-c"
00 00 00 01 01 98 40 00 FF 32 42 A% 01 64 66 CO veseve wolJosofe
€2 00 20 7C BF FF FF FF 01 9 é0 00 FF 8 4A A= c.-'ooco-n‘.och
01 64 66 00 01 54 20 7C OC 00 30 01 C1 9% 42 A: eofaol=foscoosle

01 €2 43 EE 03 00 01 C6 2C 74 Fé6 28 D01 94 52 82 eoMoeoon=ZaloeRe
39 C9 6 2E OC 10 CO 27 o6& 24 52 38 21 C9 4g 22 esfssca FER,0an”
3C 10 0C 27 6¢ 02 40 16 ©OC 10 00 5% 66 44 20 7C cee’ta"sesa®fD=|
FF FF FF FF 01 9 52 88 81 C9 6C 06 éC 34 61 42 cesecolocele batd

=DUMP PATCH.LO,#PR;S=$C, T=$D
|

€0 €C 53 AE 01 92 4A AT 01 C2 6 14 1C 7C EF EF *eSecedeccfaclon

|

G1 €2 4C FA 03 00 =¢ 10 2D 7A F5 DC 01 92 60 BE coleseee=Zocoo" e

4A AE C1 9 54 OO =E A4 25 74 FS CC C1 92 60 0OC JeecejeoeTZosoo" o

£z GA 4% F4 E5 £6 41 FA €% F5 41 0C 05 00 €9 0° ceCecelocoBocee

ED 3C 4% E7 00 C0 20 34 FS5 AL 41 00 0% 7C 63 Q6 20Hooeo ZoodBeel e

2C 0OF &0 3¢ ¢5 34 4a AE 01 C2 66 Cé 4C DF 03 SO s tf6Jeocfolose
SN=$D 13

60 22 24 4% 4C BF 03 CC ¢2 81 12 22 g2 00 32 10 ML 10T I D JR

67 12 D3 6% 01 g 12 C D3 65 1 CO 15 &1 88 CO GeeloescsefNecceaec
42 AE 4 84 ¢ AE 01 92 &E 75 &C o 0z DO LA 9F BeosRoeoeNUbLsasde
48 8: 64 0C FE 4% o0 00 FC D2 83 £3 47 18 52 88 JoafoeoH acoaaBoRe
41 00 03 FA 61 00 FE AE 66 44 61 (GC 04 DO 2D 41 PecolooccfClBooa=h
01 0O &0 0C FL 8C 20 34 F5 78 &3 F4 F9 7C 61 9C so eeo feXlool®e
N6 &4 &3 FA F9 €4 49 B4 F? 79 €1 0G0 04 48 60 0C eDCoojlooydaaH®,
#C AD 52z 88 0C 10 00 4D 66 02 52 88 61 0C 03 8E coRoaeccoMfoRedooo
25 LF 01 9“ 60 00 FD 04 LA E 01 34 66 04 61 00 ‘O-o‘o--J-.ofcll

03 96 20 34 FS 28 43 FA F3 74 61 20 064 58 43 FaA ce to?*CactB®oeclo
EP ¢0 41 FA F9 71 61 00 04 CC &0 00 F2 D2 61 00 e"heoliZone osoolle
04 30 ¢C 0D BC SC 20 24 E4& D& O 34 FES 14 08 CO eD%cel feovocccoe
00 00 67 1C &3 kA =8 7C &1 FA PR 93 61 00 Cé CE esCeloclBoandace

60 00 FC 3E 28 40 2F 00 43 FA FB 36 20 3a Fé& Bé& "e02(3/alasé oo
7€ 01 60 12 61 CJO 02 8¢ 60 02 €0 12 €é¢ 0T FC 22 “eleBeoe s ofas"
12 €1 52 80 52 87 OC 87 0O 00 00 Ca efF £¢6 0OC 87 eoRoRessvcnedone

FIGURE 4-2. Typical DUMP

4-35




DUMPANAL




4.2.9 Dump Analysis Utility (DUMPANAL) . DUMPANAL

The DUMPANAL utility analyzes the contents of a system crash dump. It will list
various system tables and any memory locations as they appear in the dump file.

A system crash dump is saved on disk as a result of the firmware-resident debug
monitor command, or by using the DUMP button on the front panel of an
EXORmacs.

DUMPANAL is an interactive operating system debugging tool. Output can be
directed to the user‘s terminal or can be redirected to a printer.

DUMPANAL Command Syntax

DUMPANAL [<input field>] [,<output field>]
where:
input field Is the file descriptor of the dump file to be analyzed. If
no file descriptor is supplied, then the user's default
volume and user ID are assumed with a filename DUMP.SY.
output field Is the name of the device where output will be listed. If no
output field is given, the default is the user's interactive
terminal.
DUMPBNAL responds by displaying a prompt for entry of subcommands:

DMPA s>

Quit Subcommand Syntax (QUIT)

DMPA:>Q[UIT]
where:
Q or QUIT Is the subcommand for terminating the DUMPANAL utility and
returning control to VERSAdos.

iddress Dump Subcommand Syntax (AD)

DMPR:>AD <addressl>|.<offset>] <address2>

where:
aD Is the subcommand to dump a block of memory in hex format.
addressl Is the starting address of the block of memory to be dumped.
offset Is a hex value that will be added to <addressl> to determine
the starting address of the block of memory dumped.
address2 Is the ending address of the block of memory dumped.

4-36




|
g
|
:
z;
;;
|
|

DUMPANAL
Channel Control Block Subcommand Syntax (CCBS)

DMPA:>C[CBS]
where:

CCBS or C Is the subcommand to dump the contents of all Channel Control
Blocks known to the system.

Free Memory Subcommand Syntax (FREE)

DMPA:>F[REE] <partition#>

where:
FREE or F Is the subcommand used to list the free memory list foxr any
memory partition.
partition # Is the memory partition number.

Global Segment Table Subcommand Syntax (GST)

DMPA:>G[ST]
where:

GST or G Is the subcommand to list all entries in the Global Segment
Table. Each entry describes the size and attributes of a
globally or locally shareable segment.

See Appendix E, paragraph E.5, of the Real-Time Multitasking

Software User's Manual, M6BKRMS68K, for a description of the
Global Segment Table.

Map Subcammand Syntax (MAP)

[MPA : >M[AP]
where:

MAP or M Is the subcommand for listing the limits and size of each
memory urtition and the free memory list for partition 0.

See Appendix E, paragraph E.9, of the Real-Time Multitasking

Software User's Manwal for a description of the Memory Map
and Free Memory List.

4-37




DUMPANAL

Memory Dump Subcommand Syntax (MD)

MPA:>MD <address>[,<offset>] <§ bytes>

where:
MD Is the subcommand used to dump a block of memory in hex
format.
address Is the starting address of the block of memory to be dumped.
offset Is a hex valve that will be added to <address> to determine
the starting address of the block of memory dumped.
# bytes Is the nummber (expressed in nex) of bytes to be dumped.

Offset Subcommand Syntax (OFF)

DMPA:>0FF <address>

where:
OFF Is the subcommand used to set a default memory address offset
for use by the MD and AD subcommands.
address Is a hex value to be used as a memory address offset.

Output Subcommand Syntax (OUT)

DMPA:>OUT <device>

where:
QUT Is the subcommand used to select an output device.
device Is the output device. # selects the user's terminal; #PRn

selects a printer.

Periodic Activation Table Subcommand Syntax (PAT)

DMPA:>P[AT]
where:

PAT or P Is the subcommand used to list all of the tasks with entries
in the Periodic Activation Table as a result of having
delayed or requested periodic activation.

See Appendix E, paragraph E.10, of the Real-Time Multitasking

Software User's Manual for a description of the information
found in the Periodic Activation table.

4-38




READY Subcommand Syntax (READY)

where:

. DMPA:>R[EADY]

READY or R

Is the subcommand used to list selected informaticn about
each task currently on the ‘Ready' 1list (these tasks are
waiting to run). The information is taken from the Task
Control Biock associated with each task.

See Appendix E, paragraph E.2, of the Real-Time Multitasking
Software User's Mamual for a description of a Task Control
Block.

Register Subcommand Syntax (REGS)

where:

x
;,
? REGS

DMPA :>REGS

Is the subcommand used to list the contents of the program
counter, status register, and all address and data registers
at the time of the system crash.

Stack Subcommand Syntax (STACK)

DMPA : >STACK

: where:

STACK

Is the subcommand used to dump 200 (hex) bytes of the system
stack area.

System TCB Subcommand Syntax (STCB)

where:
SICB or S

DMPA:>S[TCB]

Is the subcomvand for listing selected information about each
system task currently known to the system. The information
listed is taken from the Task Control Block associated with
each task.

See Appendix B, paragraph E.2, of the Real-Time Multitasking

Software User's Manual for a description of a Task Control
Block.

4-39




DUMPANAL

System Parameters Subcommand Syntax (SYSP)

DMPA:>SY[SP]
where:
SYSP or SY Is the subcommand for listing the system parameters.
See Appendix E, paragraph E.l, of the Real-Time Multitasking

Software User's Mamual for a description of system
parameters.

Tables Subcommand Syntax (TABL)

DMPA :>T[ABL]
where:

TABL or T Is the subcommand for listing all of the tables recognized by
DUMPANAL. The TABL subcommand is the equivalent of entering
the following subcommands:

SYSp
REGS
STACK
TRAP
MAP
ICB
READY
PAT
UsT
GST
CBS
TRACE

4-40




DUMPANAL

Task Subcommand Syntax (TASK)

DMPR:>TASK <task name>[ <sessior:]

where:
TASK

task name

session

Task Control Block

Is the subcommand used to reguest a detailed list of
information about one task.

The information listed is found in the Task Control Block and
Task Segment Table for the given task.

See Appendix E, paragraphs E.2 and E.3, of the Real-Time
Multitasking Software User's Mamual for descriptions of the
Task Control Block and Task Segment tables.

Task name can be entered as a 4-character ASCII value or as
an 8-character hex value preceded by S$.

Session can be entered as a 4-character ASCII value or as an
8-character hex value preceded by §. If no session is
entered, the first task found with the given task name will
be listed.

Subcommand Syntax (TCB)

IMPA:>TCB
where:
TCB

Is the subcommand for listing selected information about each
task currently known to the system. The information listed
is taken from the Task Control Block associated with each
task.

See Appendix E, paragraph E.2, of the Real-Time Multitasking
Software User's Mamual for a description of a Task Control
Block.

Trace Subcommand Syntax (TRAC)

DMPA:>TR{AC)
where:
TRAC or TR

Is the subcommand used to list the System Trace Table
entries. The entries are listed in chronological order from
the oldest to the mos®t recent. The time that each entry was
built and the difference in tim2 between entries is also
listed.

See Appendix E, paragraph E.7, of the Real-Time Multitasking
Software User's Manual for a description of Trace entries.

4-41




DUMPANAL

TRAP 1s the subcommand for listing the Trap Instruction Assignment
Table and the Trap Instruction Owner table. These tables
indicate which Trap instructions are currently owned by
server tasks.

See Appendix E, paragraph E.l, of the Real-Time Multitasking

Software User's Mamual for a description of the TIAT and TIOT
tables.

User Semaphore Table Subcommand Syntax (UST)

DMPA:>US([T]
where:
UST ox US Is the subcommand to list all entries in the User Semaphore
Table.
‘;
See Appendix E, paragraph E.6, of the Real-Time Multitasking
Software User's Mamual for a description of the User ’

Semaphore Table.,

|
|
: User TCB Subcommand Syntax (UTCB)
f [MPA:>U[TCB]

where:

UICB or U Is the subcommand for listing selected information about each
user task currently known to the system. The information
listed is taken from the Task Control Block associated with
each task.

See Appendix E, paragraph E.2, of the Real-Time Multitasking
Software User's Manual for a description of a Task Control
Block.

4-42




:
|
1
y
&
i,
:
r
:
|

DCVPANAL

DIMPANAL - Summary of Subcommands

Program Control Commands

QUT <device>

QIT

Mamory Dump Commands

OFF <address>

MD <addressl>[,<offset>]

AD <addressl>[,<offset>]

REGS
STARCK

List System Table Commands

CCBS
FREE n
GST
MaAP
PAT
READY
STCB
5Ysp
TABL
TASK <name>[ <session>]
pie:)
TRAC

Send ocutput to <Jeviced>.

Terminate program.

Set default memory address offset to <address>.

< bytes>
Dup <§ bytes> starting at <addressl> + <offset>.

<{address2>
Dump memory <addressl> to <{address2>.

List registers at time of crash.

Dump $200 bytes of system stack area.

Channel Control Blocks.

Free Mawory List for memory partition n.
Glokal Segwent Table.

Memory Map.

Periodic Activation Table.

Task Ready List.

System Tasks.

System Parameters.

All system tables.,

Detailed information about one task.
All tasks.

System Trace Table.

Trap Instruction Tables.

User Semaphore Table.

All user tasks.

4-43






4.2.10 Free Utility (FREE; FREE

Knowledge of unallocated space on a disk is often needed for file creation or
editing, or before copying a file. The FREE utility determines and displays in
decimal and hexadecimal representation the total number of available sectors and
the size of the largest available block of contiguous sectors in decimal and
hexadecimal representation for a specified volume.

FREE Command Syntax
FREE [<volume ID>][,<list field>]

where:
volume ID is the ID of the volume from which allocation information is
required. Device names are not allowed.
list field is the name of any file or physical device. If it is a file,

the default extension is .LS.
NOTE

Only the system administrator can use
the FREE utility on a system volume.
Others will get a PROTECT CODE ERROR.

FREE Utility Example

Example of minimum command line - null input and output fields.
=FREE

VERSAdos supplies the default volume ID established at session initiation (the
rull user number and catalog name fields are ignored) and directs the following
message to the default system output device:

VOLUME BARR
DDDDDDDD/HHHHHHHH ~TOTAL SECTORS AVAILABLE (decimal/hex numbers with
DDDDDDDD/HHHHHHH LARGEST CONTIGUOUS SECTORS  leading zeros blanked)
DDD% OF SECTORS ARE AVAILABLE

4~44







4.2.11 Initialize Utility (INIT) INIT

The Initialize utility, INIT, must be used on all new disks. Additionally, new
hard disks and double-sided diskettes must be formatted -- i.e., certain sector
addressing information must be written on them. (Mew single-sided diskettes
must be initialized, but ordinarily do not require fermatting.)

INIT performs both of these tasks. Its interactive dialog permits the user to
input information necessary for the Volume Identification Block (VID), including
a volume ID of four alphanumeric characters (first character must be alphabetic)
and a 20-character description (any ASCiI characters). It will check user~
specified configuration data against the actual disk configuration. If the disk
is already formatted accordingly, it need not be reformatted. If an error
occurs during this check, the first line of the configuration change request is
output again.

The INIT utility will write configuration information onto the disk. It will
also generate a bootable disk frem .SY files that require an absolute load
address or that are position-independent, having a load address specified by the
user at INIT time. During validation, the physical addresses of bad hard disk
sectors are flagged in the Sector Allocation Table (SAT) and written in the
Sector Lockout Table (SLT) by the INIT command. petailed descriptions of
logical disk and file structure, including the SAT and the SLT, are provided in
the REPAIR utility discussion.

CAUTION

INIT MAY BE USED TO REINITIALIZE AND/OR REFORMAT A PREVIOUSLY USED
DISK TO ALLOW ITS RE~USE. HOWEVER, IT IS RECOMMENDED THAT THE DIR
UTILITY BE USED FIRST TO IDENTIFY THE CONTENTS OF THE DISK AND MAKE
SURE NO WANTED FILES ARE PRESENT. FORMATTING WITH INIT DESTROYS ALL
DATA ON THE DISK. INIT ALWAYS INITIALIZES THE DIRECTORY INFORMATION.

NOTE

Operation of the INIT utility differs slightly between IPC con-
trollers (i.e., VERSAmodule Floppy Disk Controller (FDC), M6OKVM20,
and VERSZmodule Universal Disk Controller (UDC), M68KVM2l) and non-
IPC disk controllers.

INIT Command Syntax

INIT <device name>|<volmne name) [ ;<option>]
where:

device name Is the drive in which the disk to be initialized is mounted;

volume name Is the name assigned to the volume; e.g., VOLIl.
NOTE: Volume names must not be the same as device names;
e.g., FDOO-FDO3.

option Vv, which allows the user to define load address of bootstrap.
This option is ignored if 0 was not entered as user numbsr.




Initialize Utility Example

=INIT WING:

OK TO INITIALIZE $#FD02 (¥/N)?

VOLUME WING6 Y

vata Density of media (S-single,D-double) D >(CR)
Track Density of media (S-eingle,D-double)D >(CR)

S-Single or D-Double sided diskette

Media format (M-Motorola,I-IBM standard)
Physical sectors/track on media(8 bits)
Number of cylinders on media(lé bits)

Interleave factor on media(8 bits)

Bytes/physical sector on media(l6 bits)

DO YOU WANT TO FORMAT DISK (Y¥/N) ? Y

START FORMAT
ENTER NEW VOLUME NAME WIN6
ENTER USER NUMBER 0

ENTER DESCRIPTION (MAX 20 CHARACTERS)
YOU WANT THE BOOT STRAP (¥/N) ? N
YOU WANT A DUMP AREA (¥/N) ? N

YOU WANT TO VALIDATE SECTORS (Y/N)? N

Do
DO
Do

D >(CR)
I >(CR)

16 >(CR)
80 >(CR)
1 >(CR)
256 >C

INIT

{(The volume ID, if one
exists, of the diskette
in drive FD02 is dis~
played after the ? as
a reminder.)

(Initializations done on
non-IPC controllers allow
the user to change the
current configuration be-
fore the disk is initial-
ized. See discussion be-
low for responses. These
lines will not print out
for initializations done
on IPC controllers.)

(If a new disk.)
(Displayed for logon user

0 only; user 0 will own
volume.)

FLOYD'S WORK DISK

(Displayed only if user 0
was entered above.)

The following responses to the configuration information are recognized.

(CR) -~ Retain current value and issue prompt for the next item.

Q0 = Terminate. (If the initializer is terminated with the Q command, the
disk is unusable because its VID has been cleared.)

C = Configure device with current configuration information. This
response must be entered before the configuration process can begin.

CAUTION

ON DISK CONTROLLER BOARDS THAT REQUIRE MOUNT, IF A FLOPPY DISK
IS NOT MOUNTED WITH THE MOUNT UTILITY, IT IS CONSIDERED A
FOREIGN DISK AND CAN BE REINITIALIZED WITHOUT USER NUMBER

PROTECTION.

4-46




INIT

Initialize Utility Example - Hard Disk System

=INIT $HD10;V

OK TO INITIALIZE #HD10 (Y/N) ? ¥ (The volume ID of the disk
in drive HD10, if one
exists, is displayed
after ? as a reminder.)

Physical sectors/track on media(8 bits) 32 >(CR) (Initializations done on
Nurber of cylinders on media(lé bits) 256 >(CR) non-IPC controllers allow
Interleave factor on media(8 bits) 8 >(CR)  the user to change the
Bytes/physical sector on media(l6 bits) 256 > C current configuration be-

fore the disk is initial-
ized. See discussion be-
low for responses. These
lines will not print out
for initializations done
on IPC controllers.)

DO YOU WANT TO FORMAT DISK (Y/N) 2 ¥ (If a new disk.)

START FORMAT

TRACK BY TRACK FORMAT (Y/N) ? N (See discussion below.)

ENTER NEW VOLUME NAME SASI -

ENTER USER NUMBER 0 {Displayed for logon user
0 only; user 0 will own
volume.)

ENTER DESCRIPTION (MAX 20 CHARACTERS) TEST D1SK
DO YOU HAVE LOCKOUT TABLE ENTRIES (¥/N) ? N
VALIDATING SECTORS....
0 BAD SECTORS ENCOUNTERED
DO YOU WANT A DIAGNOSTIC TEST AREA (Y/N) ? N (See discussion below.)
DO YOU WANT THE BOOT STRAP (Y/N) ?Y
FILE NAME IS: WIN:0000..IPL.SY
ENTER NEW NAME IF NEEDED WIN:0..VERSADOS.SY (V option)
THE CURRENT LOAD ADDRESS IS $00040000
ENTER NEW LOAD ADDRESS §  (CR)
DO ¥YOU WANT A DUMP AREA (¥/N) ? N

If a non-IPC hard disk is being formatted, the user must choose either the
format track or the format disk option. (1f a floppy is being formatted, a
format track is always used.) Format track allows the user to read or write
other devices on the same controller board while the hard disk is being
formatted. If a format disk is requested, no other devices can be accessed
until formatting is completed on the hard disk.

Hard disks have an SLT for reserving sectors; floppies do not. The access to
the SLT provided by the INIT command allows a user to reserve a number of
sectors for special use. Reserved sectors are flagged (the corresponding bits
are set) in the SAT, and the appropriate information is entered in the SLT. Bad
sectors discovered during validation are also flagged in the SAT and entered in
the SLT. Reference the REPAIR command for a description of SLT.

4-47




INIT

Another structure allowed on hard disk is the diagnostic test area. When a
diagnostic test area is requested, two complete tracks are reserved on each
recording surface -- one on the inner and one on the outer portion of each
recording surface. The reserved tracks are used to store diagnostic programs
and test patterns used for determining disk system viability during perindic
maintenance. Sectors in the diagnostic area are flagged in the SAT as
unavailable.

If the bootstrap is opted for, the specified file will be copied to the
initialized disk. It will be set up so that the firmware-resident debug monitor
BO command, if told to use this disk, will load the file and execute it. For
EXORmacs, WMC 68/2, and VME/10 systems, this file is a bootstrap program which
loads the actual operating system from another file. The defaults for volume,
user number, and catalog are the system volume, 0, and null, respectively.

1f option V was specified on the command line, and the bootstrap is to be copied
to the intialized disk, then the user can specify the load address. For
example, if the user wants the bootstrap to be loaded at address $1000 instead
of $0000, then $1000 should be entered when asked for. For this option to be
operable, the user must have entersd 0 for user number at logon or with the USE
command .

The option of specifying a dump area allows an area of the desired size (of
diskette capacity, for example) to be allocated under the file name DUMP.SY.
Following a system crash, the resident debug monitor can then access the dump
file via the pointer in the disk volume information directory installed by the
INIT comnand. Note that sactors are always validated for hard disk
initialization -- a choice is nut offered.

NOTES

The file DUMP.SY is write protected. This is done so that the
file cannot be deleted or overwritten during a BACKUP or COPY.
If DUMP.SY is deleted or moved to another area on the disk, the
dump area pointers in the VID (reference the REPAIR utility for
the format of VID) must also be changed because this is the
information that the firmware-resident debug monitor uses when a
memory dump is requested. If DUMP.SY does not reside where the
VID pointers indicate, a memory dump may cause valid data
(either files or system tables) to be destroyed.

For VMC 68/2 and VME/10 systems, the V option must be used, and
the load address is $E0C.

4-48



INIT

‘ Incorporating Manufacturer's Bad Sector Data into the SLT

New hard disks are delivered with a list describing cylinder, head, and sector
number for each sector known to be bad. These locations should be entered into
the SLT to ensure that data will never be stored in them.

The following steps can be used to find the Physical Sector Numbers (PSN's) of
these bad sectors for entry into the SLT using INIT:

a. Find the sectors per track (SPT), spiral offset (SP0O), and number of
heads (HDS) for your drive type. Table 4-4 provides this information for
initializations done on IPC controllers. For initializations done on
non-IPC controllers, consult manufacturer's documentation.

b. For each sector in the manufacturer's bad sector list, do the following:

. Locate the cylinder number (C), head number (H), and sector number
(S) .

. Compute the PSN, using the following formula:
OFFSET = (S-SPO* (H~1)) MOD SPT

IF OFFSET <0 THEN OFFSET = OFFSET + SPT
PSN = (C*HDS+H-1) * SPT + OFFSET

4-49




¥ 99 £°0S ¥201 € ¥9 I3ISBYDUTM - 0599 WeTad 11
¥ €€ 9°LZ 195 € #9 I33SBYDUTM - 0SEE WTa o1
(o) +daxop
v 091 SeT €Z8 ot ¥9 I93SSUDUIM W 09T-0€L6  ®3Rg T0I3U0D 6
(o) °daop
¥ 08 v°L9 £28 S ¥9 ISISBUDUTM O 08-0€L6 ®3IRQ TOI3UCH 8
(o) daop
¥ 00¢ 962 €28 61 79 srqescusy s 99/6 eled TOAIUCD L
(Qao} *daop
12 0ST 821 1487 61 #9 sTqeAcwy ans ¥9.6 BIEQ 10I]UOD 9
(om) -dxop
¥ 08 ¥°L9 €28 S %9 sTqeAcnsy as 296 ®©IRQ TOIUOD S
(=]
sz 702 %29 z 79 poX1a (o) *dicp 9
0 T4 v°0z ¥29 4 ¥9 STqeAcy av LS¥6  ©Ieq TOIUCD ¥
=] 8°9 902 r4 9 pex1d {Om) “diaop
0 G°8 8°9 90z r4 ¥9 STqeAcuE=y aw1 GShE  'aeQg TOIUOD €
08 $°L9 €28 S ¥9 pexid o) cdacs
¥ 9T G°€T £Z8 1 ¥9 aTqeACESY @O 96-8%¥6  EIRC TOIJUC: rd
8% SOV €28 € %9 pox1d (Om) +dacp
¥ 91 S°¢T €28 1 ¥9 sTqeAcuy ad $9-8%¥6 eleq ToIIUOD I
1 G €T €28 T ¥9 psxta (Om) °daop
12 9T S €1 €28 T 79 aTqeAcSY @D ZE-8¥¥6  ©IRQ TOIJUCD 0
(0ds) (346W) (S34gW) SHIONTIXD (SaH) (1ds) VIGHEH HdAL TAGOW ETHOLOVANNYRN 330D
JASdi0 CELIGRIOINA CAILYRION SavaH MOVEL AATSA
TWY1dS ALIONAYD ALIDRAED YINa /S¥olodEs
si9jsurRIed SATIQ YSTQ ISTTOZIIUCD D4l  °¥F—§ TIEVL

LINI







4.2.12 Library Utility (LIB) LIB

The purpose of the Library utility is to complete the process of making
functionally related groups of proven routines, subprograms, and programs
available for relocation and linking into executable load modules by the linkage
editor. Since the Library command operates on files of relocatable object type
produced by assembly or compilation of source ASCII (.SA extension) files, the
creation of a library begins early in the software development process. Program
parts that the user knows will be useful should be pulled together into .SA
files through use of the CRT editor, and then assembled or compiled into .RO
files. These can then be combined into a library file or files, using the
library utility. &t linkage time, both the user-created library files and those
supplied with the system high-level languages can then be made available for the
resolution of external references, relocation, and linking.

The capability to manipulate individuval modules within a library file is
provided by the command set of the Library utility.

Each copy of a file module added to a library file is given a name taken from
the first record of the copied module. The user should ensure that each module
name within a library file is unique, for two reasons:

a. The linkage editor, in its first pass in which it searches for externally
defined symbols, examines the modules in a library file for a symbol.
Upon finding a symbol, it thereafter associates that symbol with the name
of the module in which the symbol was found. On the relocation and
linking pass, the ~ditor tries to access the module by name. An error
will result ‘¢ =~.iier module of the same name resides within the same
library file.

b. As the muber of modules increases, a descriptive name can be a valuable
memory aid.

Relocatable object module names come into existence through use of an assembler,
compiler, or linkage editor. Use of the assembler directive, IDNT, allows a
name to be given to the resulting .RO module. If the directive is not used,
however, the default name ASM is assigned and will become the name of the
library module made from that .RO module. Therefeore, consistent use of the IDNT
directive is recommended to eliminate this source of duplicate library module
names .

The Library utility is a language comprised of seven commands: ADD, REPLACE, -

DELETE, COPY, LIST, QUIT, HELP, and CHANGE. When the utility is brought into
memory, it also builds an internal directory of names of all modules in the .RO
file cited on the command line. This directory is updated thereafter as the
utility is used.

4-51




-
LIB
LIB Command Syntax
LIB <libname>[,<output field>] ‘
where:
LIB Is the command mnemonic.
libneme Is a standard VERSAdos file descriptor. The descriptor can

be fully specified or, as a minimum, the file name field
specified with established default values assumed. The
default value for the file name extension field is .RO.

output field May be any file name or device name. The default value is
the session terminal. If a file is specified without
extension, the default is .LS. Only the LIST command will
cause output to be directed to the specified output field.

The Library utility responds to the command entry by displaying a greater-than
symbol (>}, indicating that the subcommand set of the utility is now available

for use. Following the > prompt, the user may quit the utility or construct a

library through use of the following seven subcommands. If a file called

<libname> exists, it is made available for modification. Otherwise, a file of

that name is created.

Quit Subcammand Syntax (QUIT) .
>QUIT

where:
QuIT Is the subcommand mnemonic.

4-52



e e

LIB

. Add Subcommand Syntax (ADD)
>A[DD] <filename>[<option>)
where:

ADD or A Is the subcommand mnemonic.

filename Is the file from which a copy of the first module therein is
added to the library file in accordance with the option
specified. The default file extension is .RO.

option Will determine where in the library the new module is to be

added. It may be one of the two options which follow.
If no option is selected, the module will be added at the end
of the library.

/ This option will cause the module to be added ‘
at the beginning of the library. ‘
|

/ <modnamed> This option will cause the module to be added
after the file <modname> which is already in
the library.

Multiple modules may be added by specifying each module, with its option (if

. specified), separated from the next module by a comma. An attempt to ADD a
module from a file containing wultiple modules results in a display of the
following message:

WARNING: SOURCE CONTAINS MORE THAN OME MODULE

Example:
>8DD FILE3 ,FILEZ2/ FILEL/FILE2
The end result of this is that:
| FILE2 will be at the beginning of the librar:.
é FILEL will follow FILE2 in the library.
| FILE3 will be at the end of the library.

4-53




|
|
:
]
»
z
1
:

Delete Subcommand Syntax (DELETE)

>DEL[ETE] <modname> [, <modname2> ..., <modnamedl>]

where:
DELETE or DEL
modname

Jodname? modnamei

Is the subcommand mnemonic.

Causes the module called modname to be deleted from the
library file.

Is an optional field in which the names of other modules
to be deleted from the library file may be entered.

Replace Subcommand Syntax (REPLACE)

>R[EPLACE] <filenamed/<modname> [,<filename2>/<modname?>] ...

where:
REPLACE or R

filename

¢« £ilename2/modname?

Is the subcommand mnemonic.

Is the file from which the first module will be taken to
replace the module specified in the following field. The
default extension is .RO.

Is the module in the library which will be replaced by the
first module from the file specified in the preceding
field.

Signifies that multiple module replacements can be
specified on a single line, *‘f desired. (NOTE: modules
may be named to capacity of command line.)

The module name in the replacement file can be identical to the name of the
library module being replaced. If the module names are different, the name of
the libarary module is replaced with the name of the replacement module.
Identical module names are not allowed in a library file.

4-54



LIB

Copy Subcommand Syntax (COPY)

. >C0[PY] <filename>/<modname> [,<filename2>/<modname> ,<filename3>/
<modname>] ...
where:
COPY or CO Is the subcommand mnemonic.
filename Is the name of a VERSAdos file which will be created to

contain the module specified in the following field. The
default extension is .RO.

modname Is the name of a module in the library file, a copy of
which will be made and placed in the created file called
filename .RO.

filename2/modname , fi lename3/mo name

Signifies that copying of multiple modules can be
specified on a single line, if desired.

This command allows copies to be made of selected modules within a library file.
Modules within a library file are unchanged.

library to be listed. More than one module within a
library can be specified.

E . List Subcommand Syntax (LIST)

: SLIST [,<modname>]...

%

% where:

%

% LIST Is the subcommand mnemonic. If no module names are
| specifinr2, libwsry Aivactsru antvies for all modules in
| the library are listed.

| modname Causes the directory entry for a specified module in the
%

|

|

E

The LIST subcommand supplies the following directory information for each
specified module:

Module name Description

Version number Name of source file from which .RO module
| Revision number wag created
% Language processor type Date and time the .RO file was created

The above information is taken from the identification record of the RO file.

4-55




LIB

| SCH[ANGE] <modname>

where:

CHANGE or CH Is the subcommand mnemonic.

modname Is the name of a module in the library file. One or more
items in the identification section of the first record in
the module can be changed in response to displayed messages

as follows:

DISPLAY USER RESPONSE

MODNAME ~ ENTER NEW MODULE NAME (CR) or <modnam1>{CR)

| OLD-nnn  ENTER NEW VERSION # (CR) or nnn(CR)
OLD-nnn  ENTER NEW REVISION # {CR) or nnn(CR)

;
é OLD DESCRIPTION

; ENTER DESCRIPTION UP TO nn CHARACTERS (Note that nn is the length of the
S old description. The new
E description cannot exceed this
g length. If shorter, umused spaces
é; are filled with blanks.)

E

Help Subcommand Syntax (HELP)

>HELP
where HELP is the subcommand mnemonic.

This subcommend will give the user a list of the subcommands and their
corresponding command line syntax.

4-56




LIST




4.2.13 List Utility (LIST) LIST

All or part of a file can be printed or displayed through use of the LIST
utility. The command allows row and column page format, a heading, and line
mmbers to be specified. Portions of a file can be obtained by citing beginning
and ending line numbers. The file should be sequential or indexed sequential
and contain displayable ASCII characters.

LIST Command Syntax

LIST <input field>[,<output field>] [;<options>]
where:

input field May be any file descriptor (minimum of file name field
required; if not specified, default extension of .SA
assumed) .  Multiple file names separated by "/" may be
specified. File should be sequential or indexed sequential,
containing only displayable ASCII characters.

output field May be any physical device or file name. If output field is
a file name with no extension specified, the extension will
default to .LS.

options 1 - Go into interactive mode. If this option is
specified, no other options specified on the command
line will be processed. Interactive mode entry is
indicated by display of a greater-than symbol (>).

H - Prompt user for a heading before performing list. If
the H option is not selected, the heading defaults to
the input field exactly as it is keyed in.

F - Prompt user for nonstandard page format. With this
option, the user can select a nonstandard count for
the number of rows and columns to appear on a single
page. If this option is not selected, the default row
count is 60 and the default colum count is 80 for
non-printer devices. If the output device is a
printer, row and colum count will default to the
values defined for that device at system generation
time,

L=nn - Selecting the L= option will result in line numbers
being placed on the output listing. nn is the first
(base) line number assigned to the first record
listed. Line numbers require eight characters at the
beginning of the output record. nn can be up to six
decimal digits. The minimum value for nn is 1.

S=nn - Defines the beginning line to list. nn is hexadecimal

if preceded by $; otherwise, decimal is assumed. nn
can be up to five decimal digits.

4-57




LIST

T=nn - Defines the ending line to list. nn is hexadecimal if
reeceded by '$'; otherwise, decimal is assumed. nn
can be up to five decimal digits.

NOTE: If neither the S= nor T= option is selected, the
default value (entire file) is assumed., If S= alone
is specified, the T= default {(end of file) is assumed.
If T= alone is specified, the S= default (beginning of
file) is assumed.

LIST Utility Interactive Mode Subcommands

With the exception of QUIT, all interactive subcummands will prompt the user for
further input if he simply keys in the subcommand letter followed by a carriage
return. However, entering the subcommand parameters on the same line as the
subcommand letter eliminates further prompting £or that subcommand. The
folowing subcommands are provided:

SHELP
Causes the following list of available subcommands to be displayed:

Iegal options in interactive mode are:

'H* - Define heading

'R - Define nonstandard row and column counts
L* - Put line mumbers on listing output

Dt - Display (list) a range of logical records
'QUIT' - To quit

>H <string of up to 60 charactersd>

The heading subcommand is used to specify a new heading. If only H is entered,
the user is prompted with the following line:

Enter headir; - 60 characters maximum:

>F nn,mm

The format subcommand sets the row count (nn) and column count (mm) for the
listing page. nn and mm can be up to six decimal digits. If only F is entered,
the user is prompted with the following line:

Enter row and column counts separated by comma:

4-58




LIST

>L nn

The Line subcommand specifies line numbers for the listing. The beginning line
number is nn, which must be greater than 0 and may be up to six decimal digits
long. If only L is entered, the user is prompted with the following line:

Enter base line number:

>D nn,mm

The Display subcommand causes a range of lines from line number nn through line
nuvber mm to be listed. If only nn is specified, only line nn is displayed. If
nn is greater than mm or greater than the last line in the file, then no lines
are displayed. The smallest allowable value for nn is 1, which corresponds to
the first record (line) in the file. If only D is entered, the user is prompted
with the following line:

Enter starting,ending line numbers:

>QUIT

This subcommand causes the list utility to terminate.

List Utility Messages

The VERSARdos Messages Reference Manual contains general error messages that may
be output by the LIST utility. In addition to these messages, several
special-purpose messages may be output by the LIST utility. .

If the output field of the command line is a file that already exists, the
following message is displayed:

Output file exists - OK to overwrite (¥/N) ?
The user can enter Y(CR) to overwrite the existing file. Any other response
will terminate LIST.

If the I (interactive) option is selected, all other normally valid options
which were specified on the command line are ignored. Any option which could
have been specified on the commend lire can be invoked in interactive mode using
subcommands. If any valid options are specified along with the I option on the
command line, the following message is displayed:

Only *I' option processed
Processing will then contimue as if only the I option had been selected.

4-59




LIST

If a syntax error is detected while processmg the D (Display) subcommand line,
the following message is displayed:

Enter range of lines as follows:

'D S,T to list from line S to line T
A leading '$' implies hex input

S and T must be larger than 0

If a syntax error is detected while processing the F (Format) subcommand line,
the following message is displayed:

Enter row and column counts as follows:
'R,C' where R is the row count per page
and C is the column count. R must be
greater than 9. C must be greater than 0.

The user must then correctly enter the row and column counts before proceeding
with any other interactive commands.







4.2.14 Build Load Module Utility (MBLM) MBLM

The Build Load Module utility can be used to create a load module from object
code produced by the M68000 Family Cross Macro Assembler (refer to manual
M6BKXASM) . For transporting ease, the cross assembler cutput is in Motorela
S-record form, which cannot be transformed directly by the linkage editor into a
load module. The module produced by executing MBIM is a loadable object file
(of .LO extension), which can be called for loading and execution as any
VERSAdos utility is invoked, by simply naming the file. MBLM is functional only
with VERSAdos for EXCRmacs and VME/10 systems.

wWhen a VERSAdos utility is invoked, a user task is created. The information
needed for the loader information block of the .LO file is obtained through an
interactive dialog with the MBIM utility.

As a module is built, a pass is ewscuted for each memory segment to be huilt.
The first pass searches for S-records which lie in the bounds of the first
segment. The second pass searches for S-records which lie in the bounds of the
second segment, and so on. Consequently, S-records in the input files need not
be in a particular order.

Memory space required is equivalent to 5K (the size of MBIM), plus space for the

largest specified segment. Since MBLM dynamically allocates work space for a
buffer work space segment, the required memory space need not be contiguous.

MBIM Conmand Syntax

MBIM <input field>[,<output field>]
where:

input field May be from one to four file descriptors (minimum of file
name field required -- see paragraph l.4) separated by slash
(/) characters as filenamel/filename2, etc.

output field May be any file descriptor. If no output field is specified,
: the command defaults to the last specified input field file
descriptor, and supplies an .LO extension. If an existing
file descriptor is specified in the output field, the user is

given the choice of re-using the descriptor or terminating.

Build Load Module Utility Example

In the following example, values are shown for the task control parameter block
(and loader information block) and memory segment parameters, which can be
entered by the user as a general means of creating a load module. In addition,
brief explanations of the various parameters are given.

Task Name - A 4-character alphanumeric string of the user's choice, beginning
with an alphabetic. Serves as identification for inter-task communication.

4-61




MBLM

Task Session - A 4-digit hexadecimal number that sexves as an extension to the
task name to uniquely identify a task and facilitate protection of inter-task
directives issued by the executive.

Task Priority - A 2-digit hexadecimal number which enables a user to assign
relative task importance. The task priority becomes a factor in the allocation
of system resources.

Task Attributes - A 4-digit hexadecimal number which identifies the requested
task as being a system task, a mewory resident task, a combination of both, or
neither.

8000 = system
4000 = memory resident
0000 = neither

Task Options - A 4-digit hexadecimal number.

8000
4000

monitor specified
monitor propagated

Task Entry Point - The address in hexadecimal of the task entry point.

Command Line Address - An address in hexadecimal of a read/write buffer into
which the loader will move the command line characters.

Command Line Length - A hexadecimal value may be entered here if some length
less than the VERSARdos 160-vharacter maximum is desired.

Segment Name - A 4-character alphanumeric string. After parameters for the
regquired number of memory segments have been entered, entering a carriage return
alone or a slash and a carriage return instead of a segment name will begin the
building of the load module. A maximum of four segments is allowed.

Segment Attributes -~ A 4-digit hexadecimal number specifying the use of the
corresponding segment:
4000 = read only

2000 = locally shareable
1000 = globally shareable

Logical Address -~ A 4-digit hexadecimal address at which the segment

Segment
will be located in the target task seyment table. The address where search for
S-records begins.

4-62




o

=MBIM BLMNEW.SA/PATCH .SA ,XOX.LO

% MACS BUILD LOAD MODULE - VER x.xu#®¥

ENTER TASK NBME (TTIT)> XX

ENTER TASK SESSION>0 Task Control Block Parameters

ENTER TASK PRIORITY>$00

ENTER TASK ATTRIBUTES>$0

ENTER TASK OPTIONS>$4000

ENTER TASK ENTRY POINT>$0

ENTER COMMAND LINE ADDRESS>$0000

ENTER COMMAND LINE LENGTH>$00

ENTER SEGMENT NAME>SEGL

ENTER SEGMENT ATTRIBUTES>S$0000

ENTER SEGMENT LENGTH>$1000 (or as reguired)

ENTER SEGMENT MNBME>

ENTER SEGMENT ATTRIBUTES>$0 Segment 2 Parameters

ENTER SEGMENT LOGICAL ADDRESS»$2000

ENTER SEGMENT LENGTH>$400 (or as required)

ENTER SEGMENT NAME> (CR) *" (Termination of command input and resumption
of egecution. Could also be /(CR)).

#% ERROR ** DUPLICATE FILE NAME ** (The file XXXX.LO specified in the output

REUSE FILE (Y/W)? ¥ field on the command line already exists).

®% THATS ALL FOLKS **

Loader Information Block Data







|
|

4.2.15 Migrate Utility (MIGR) MIGR

The Migrate utility allows any ASCII file on an MDOS diskette to be copied to a

VERSRdos file.

No data conversion is performed during t-2 copy. Binary files

cannot be copied using this command.

MIGR Command Syntax

MIGR <§Fonn>/<filenamel>[,<filename2>]

where:

#FDnn

filenamel

filename2

Is the floppy disk drive unit on which the MDOS diskette is
mounted.

Is the input file name and is the name of the MDOS ASCII file
to be copied. This name must be expressed in MDUS format
which consists of the following fields:

FILENBME = One to eight alphanumeric characters (first
character must be alphabetic). Alphabetic characters are
uppercase in all MDOS file name fields.

SUFFIX (optional) = One or two alphanumeric characters
(first character must be alphabetic). If a suffix is
prescribed, it must be preceded by the period (.) field
delimiter. If a suffix is not prescribed, the default
suffix, source ASCII (.5A), is used.

" LOGICAL UNIT NUMBER = (not required).

Is the output field and consists of the name VERSAdos will
asgign to the copied MDOS ASCII file. This name must comply
with the rules for VERSAdos file names described in paragraph
1.5. Except for the file name and extension fields, default
values for permitted null fields in the output file name will
be those established at session initiation. Defaults for the
output file name and extension fields are the MDOS input file
name and suffix, respectively.



MIGR

MIGR Command Execution

Except in the case where an output file exists under the name specified on the
cammand line, copying of the MDOS ASCII record proceeds automatically after the
migrate command is properly entered. Where the output file name specified
already exists, overwrite of the file may be requested by entering a "Y" in
response to the following display:

FILE EXISTS - OK 10 OVERWRITE (Y¥/N)?
Completed execution of the command is indicated by the following message:

MIGRATION VERSION ‘<{version nbr>' COMPLETED

Migrate Utility Examples

=MIGR #FDO1l/TESTFILE

The MDOS file TESTFILE.SA on device $FDOLl will be copied to the VERSAdos default
output volume and named TESTIFILE.SA.

=MIGR #FD01/NAMEFILE, TESTFILE

The MDOS file NAMEFILE.SA on device #FD01 will be copied to the VERSAdos default
output volume and named TESTFILE.SA.

=MIGR $FDO1/NAMEFILE ,VOLO:1.CTLGO00L . TESTFILE.AL
The MDOS file NAMEFILE.SA on device #FD0O1l will be copied to the specified

VERSBdos output wvolume and catalog. The f£full file name will be
VOL( : 01 .CTLG0001 . TESTFILE . AL.

4-65







4.2.16 Disk Mounting Utility (MOUNT) MOUNT

Racent advances in disk storage technology have produced hard and floppy disk
drives in a wide variety of physical configurations with very high storage
capacities. Many of these drives -- floppies in particular -- support many
different media formats. The MOUNT utility, in conjunction with the INIT and
DISMOUNT utilities, enables the user to access disks of different formats
without a re-SYSGEN of VERSAdos and, in most cases, without knowledge of the
media format of a particular disk or of the characteristics of the drive and
controller that are being used.

The MOUNT utility has several modes of operation, briefly described as follows:

- Disks containing VERSAdos file directories are mounted with the invoking
command line being the only required user input. All such disks are
referred to as VERSAdos disks.

- Disks containing VERSAdos directories that were initialized with older
versions of the INIT utility can be mounted with a minimum of user
interaction when first mounted and may be automatically mounted
thereafter.

- Disks not containing a VERSAdos file directory (foreign) that are used for
user application-dependent data storage may be mounted with user-specified
media format information. This information is solicited interactively
with user-oriented input and output.

- When executed from user 0 with the MOUNT Drive (D) option, the user may
change the necessary configuration data to replace a drive with a
different drive type than was specified in the VERSAdos SYSGEN.

The MOUNT utility is not functional for EXORmacs.
NOTE: The MOUNT utility is neither nécessary nor allowed for disks connected to

the IPC controllers -- i.e., VERSAmodule Floppy Disk Controller (FDC),
MEBKVM20, and VERSAmodule Universal Disk Controller (UDC), M6BKVMZ1.

MOUNT Command Syntax

MOUNT <imput field>[;<option>]
where:
input field Is a disk device mnemonic of the form $HDcd (Hard Disk)

or
$#FDcd (Floppy Disk)

vhere c specifies a SYSGEN-specified controller number
d specifies a SYSGEN-gspecified drive number

option D specifies that MOUNT Drive mode is to be entered. This

option may be specified only when the utility is executed
by logon user 0.

4-66



¢
i;
o
|
}
:
|
»
i
-
o

Mounting VERSAdos Disks - Butomatic Mode

The following steps should be used to mount a disk initialized with a version of
the INIT utility dated after January 16, 1983. (For the revision date, refer to
the message displayed when INIT is invoked.)

- Set the drive to online status. For floppies, this is done by inserting
the diskette and closing the drive door. For hard disks, the procedure is
drive-dependent. Consult the manufacturer's instructions.

- Invoke the MOUNT utility with no options, as described earlier.

The output of the utility is shown in the following examples. The volume name
of the disk is displayed with the MOUNT confirmation message. The total riumber
of VERSAdos sectors indicates the maximum capacity of the disk.

=MOUNT $FD02

MOUNT Version xXxxxx X

TEST has been mounted

Total Vdos sectors 2552

=MOUNT #FD22

MOUNT Version XXXxxx x

S¥S2 has been mounted

Total Vdos sectors 1601
NOTES :

- If the logon user number is not user 0 and does not match the user number
of the disk being mounted, the following message will be displayed:

Only the owner of the disk or user zero may mount

- If the configuration area of the disk becomes damaged, one of the
following error messages may occur:

Configuration Error Code $xx

The disk cannot be accessed properly with the given configuration
If this condition occurs, the disk may be accessed by mounting a good disk
having the same configuration and replacing it with the damaged disk

without executing DISMOUNT in between. The user may then attempt to
restore the damaged area using the DUMP and/or REPAIR utility.




Mounting VERSAJos Disks - User-Assisted Mode

Disks initialized with earlier versions of the INIT utility do not contain media
format information. All such disks consist of haxd disk fixed media, hard disk
removable media, and single- or double-sided floppy media initialized on an IPC
controller. At present, only the floppy disk media is portable to a non-IPC
controller.

The following steps should be used to mount a disk initialized with a version of
the INIT utility dated prior to November 12, 1982:

- Put the drive online. For floppies, this is done by inserting the
diskette and closing the drive door. For hard disks, the procedure is
drive-dependent. Consult the manufacturer®s instructions.

-~ Invoke the MOUNT utility with no options, as described. The user will
then be prompted with the following message:

Is this an IPC format disk (CR or N-No,5-Singie sided,D-Double sided)?

If the user responds with a (CR) or N, the utility will enter interactive
mode as described for wounting foreign disks. Otherwise, the user
identifies the disk as single- or double-sided. The volume name and total
number of VERSAdos sectors are then displayed as in automatic mode. An
invalid response to the above prompt will cause the same prompt to be
reissued.

Prior to temminating, the MOUNT utility attempts to write to sector 0 of the
disk a code that will allow automatic mode to be used for all subsequent mounts
of that disk. If the disk is write protected, the following message will be
displayed:

The VID cannot be modified for automatic mount

MOUNT Utility Examples - User-Assisted Mode

Example 1

=MOUNT $#FD22

MOUNT Version XXxXxXx X

Is this an IPC format disk (CR or N-No,S-Single sided,D-Double sided)?X (Invalid
response)

is this an IPC format disk (CR or N-No,S-Single sided,D-Double sided) (CR)

Data Density of media (S-single,D-double) D

S-Single or D-Double sided diskette D
F-Floppy diskette or H-Hard disk F

Vdos sector size 256
Total Vdos sectors 3991
Physical sectors/track on media(8 bits) 26
Number of heads on drive(8 bits) 2
Number of cylinders on media(l6 bits) 77
Interleave factor on media(8 bits) 13
Bytes/physical sector on media(l6 bits) 256

No configuration data is available for this disk
Data Density of media (S-single,D-double} D > (CR)

S-Single or D-Double sided diskette D> (CR)
Physical sectors/track on media (8 bits) 26 > (CR)
Number of cylinders on media(lé bits) 77>Q

4-68




. Exgle 2z

=MOUNT §FD22

MOUNT Version ZXxXXX X

Is this an IPC format disk (CR or H-No,S-Single sided,D-Double sided)? S
X¥Z has been mounted

Total Vdos sectors 10601
=DISMOUNT $#FD22

DISMOUNT Version XXxXxxx X

=MOUNT §#FD22

MOUNT Version Xxxxxx X

X¥Z has been mounted

Total VWos sectors 1001

Example 3

=MOUNT #FD22
MOUNT Version XxXxXXxx X
Is this an IPC format disk (CR or N-No,S-Single sided,D-Double sided)? S
XY¥Z has been mounted
Total Vios sectors 1001
MOUNT $0003 $100000E4 FROM IOS ** WRITE PROTECTED DEVICE
CMD=WRITE OPT=$6000 LU=1 DEVICE=XYZ
The VID cannot be modified for automatic mount

; . Mounting Foreign Disks

Follow the steps below to mount a foreign disk.

- Set the drive to online status. For floppies, this is done by inserting
the diskette and closing the drive door. For hard disks, the procedure is
drive-dependent. Consult the mamnufacturer's instructions.

- Invoke the MOUNT utility with no optioms, as described. The utility then
issues the following prompt:

No configuration data is available for this disk
- The utility enters interactive mode to allow changes to the media-related

configuration attributes and parameters. The operation of interactive
mode is described later.

- Input a C to exit interactive mode. A configure request is then issued to
the driver with the user-specified data. If an error is returned from the
configure request, the utility displays the following:

Configuration Exror Code $xx

: where xx is a device-dependent error code describing the first error

Ly detected in the configuration data. Refer to the VERSKdos Data

‘ Services and Program Loader User's Mamual, RMS68KIO, for descriptions of
the various Configuration Error Codes.

4-69




MOUNT

- Bfter a successful configuration has been performed, the new configuration
is validated by attempting to read track (-1 boundary sectors and the last
sector of the disk. If either attempt returns an I/0 error, the error is

displayed followed by the message:

The disk cannot be accessed properly with the given configuration
Interactive mode is then reentered to allow changes Lo be made to the
configuration data.

MOUNT Utility Example - Foreign Disk

=MOUNT #FDO2

MOUNT Version Xxxxxx X

Data Density of media (S-single,D-double} S
Track Density of media (S-single,D-double)S

S-Single or D-Double sided diskette s
Media format (M-Motorola,I-IBM standard) I
F-Floppy diskette or H-Hard disk F

Vdos Sector size 256
Total Vdos sectors 640
Physical sectors/track on media(8 bits) 16
Number of heads on drive(8 bits) 2
Mumber of cylinders on media{lé bits) 80
Interleave factor on media(8 bits) 1
Bytes/physical sector on media(l6 bits) 128

Max. muber of cylinders on drive(l6 bits) 80
Precomp. cylinder mumber on drive{l6 bits) 40

No configuration data is available for this disk

S-Single or D-Double sided diskette s >(CR)

Media format (M-Motorola,I-IBM standard) I >(CR)

Physical sectors/track on media(8 bits) 16 >(CR)

Hamber of cylinders on media(lé bits) 80 >(CR)

Interleave factor on media(8 bits) 1>(CR)

Bytes/physical sector on media (16 bits) 128 > 0 (Invalid value)

Data Density of media (S-single,D-double} S > C
Configuration Error Code $0044

Data Density of media (S-single,D-double) S >(CR)
Track Density of media (S-single,D-double}S >(CR}
S-Single or D-Double sided diskette s >(CR)
Media format (M-Motorola,I-IBM standard) I >(CR)
Physical sectors/track on media (8 bits) 16 >(CR)

Humber of cylinders on media(l6 bits) 80 > 100 (Too many cylinders)
Interleave factor on media(f bits) 1>(CR)
' ical sector on media(l6é bits) 0> 128

Data Density of media (S-single,D-double} S > C
MOtWT $0003 S10000087 FROM 108 ** INVALID SECTOR ADDRESS
e RERD OPT=56000 LU=l DEVICE=FDO2

The disk cannot be accessed properly with the given configuration

4-70




Total Vdos sectors 800

Data Density of media (S-single D-double) S > D

Track Density of media (S-single,D-double)S > D
S-Single or D-Double sided diskette Ss>D

Media format (M-Motorola,I-IBM standard) I >(CR)
Physical sectors/track on media(8 bits) 16 . >(CR}
Number of cylinders on media(l6é bits) 100 > 80
Interleave factor on media(8 bits) 1 >(CR)
Bytes/physical sector on media(l6 bits) 128 > 256
Data Density of media (S-single,D-double) D>C =~
FDO2 has been mounted {Successful mount)
Total Vdos sectors 2552

MOUNT Drive Mode (D Option)

Use of the MOUNT Drive mode is restricted to logon user 0. If the D option is
specified from a non-zero user number, the following message will be displayed:

Only user zero can use D (mount drive) option

The MOUNT Drive mode allows permanent changes to be made to all configuration
attributes that are supported by the driver for the device. Changing the
drive-related information allows a different type of drive to be used without
requiring a new SYSGEN. The default values for the media attributes and
parameters may also be changed without running a new SYSGEN.

The D option causes interactive mode to be entered so the user can view and
change any of the configuration attributes and parameters. When the user exits
interactive mode by entering C, the wutility issues a configure command to the
driver to set the current configuration as specified, followed by a configure
default command to set the defaul: configuration to match. If either
configuration attempt results in an error, the following message is displayed:

Configuration Error Code $zx

where xx is a device-dependent error code describing the first error detected in
the configuration data. Refer to the VERSARdos Data Management Services and
Program Loader User's Mamual, RMS68KIO, for descriptions of the various
Configuration Error Codes. After the error is displayed, interactive mode is
reentered.

CAUTION

DUE TO IMPLEMENTATION RESTRICTIONS IN VERSAdos 4.2,
THE DEFAULT VALUES FOR MEDIA-FELATED ATTRIBUTES AND
PRREMETERS MUST BE SET TO ACCOMMODATE THE LARGEST
CAPRCITY DISK THAT WILL BE USED. IF A DISK IS USED
THAT HAS A TOTAL HWUMBER (OF VERSARdos SECTORS LARGER
THAN THAT OF THE DEFAULT DISK TIPE, FILES MAY BE
FEAD AWD WRITTEN NORMALLY, BUT DELETING FILES COULD
RESULT 1M A DaMAGED DIRECTORY.

4-71




MOUNT Utility Examples - MOUNT Drive Mode ‘

Example 1

=40UNT $FD03;D

MOUNT Version XxXXXX X

Data Density of media (S-single,D-double) D
Track Density of media (S-single,D-double)D

S-Single or D-Double sided diskette D
Media format (M-Motorola,I--IBM standard) I
F-Floppy diskette or H-Hard disk F

Vdos sector size 256
Total Vdos size 2552
Phvsical sectors/track on media(8 bits) 16
Number of heads on drive(8 bits) 2
Interleave factor on media(8 bits) 1
Bytes/physical sector on media(l6é bits) 256

Max. number of cylinders on drive{l6 bits) 80
Precamp. cylinder number on drive(l6 bits) 40
Data Density of media (S-single,D-double} D >(CR)

Number of cylinders on media(l6 bits) 80
Track Density of media (S-single,D-double)D > §
|
|
\

S-Single or D-Double sided diskette D>S

Media format (M-Motorola,I-IBM standard) I >(CR)

F-Floppy diskette or H-Hard disk F >(CR)

Vdos sector size 256 >(CR)

Physical sectors/track on media(8 bits) 16 >(CR) ‘
Number of heads on drive(8 bits) 2>1

Mumber of cylinders on media(16 bits) 80 >(CR)

Interleave factor on media(8 bits) 1>(CR)

Bytes/physical sector or. media{l6 bits) 256 >(CR)

Max. mumber of cylinders on drive(l6 bits} 80 >(CR)
Precomp. cylinder numler on drive(l6é bits) 40 >(CR)
Data Density of media (S-single,D-double) D> C (Valid configuration)

Example 2

=MOUNT $FDQ3;D

MUONT Version xxxxxix %

Data Density of media (S-single,D-double) S
Track Density of media (S-single,D-double}S

S-Single or D-Double sided diskette s

Media format (M-Motorola,I-IBM standard) I

P-Floppy diskette or H-Hard disk F

Vdos sector size 256

Total Vdos sectors 1280

Physical sectors/track on media(8 bits) 16

Homber of heads on drive(8 bits) 1

Wurber of cylinders on media(lé bits) 80

Iriterleave factor on media(8 bits) i

Bytes/physical sector on media(l6 bits) 256 .

4-72




Max. number of cylinders on drive(l6 bits) 80
Precomp. cylinder number on drive(l6 bits) 40
Data Density of media (S-single,D-double) S >(CR)
Track Density of media (S-single,D-double)S > D
5-Single or D-Double sided diskette S>D
Media format (M-Motorola,I-IBM standerd) I >(CR)
F-Floppy diskette or H-Hard disk F>H
Vdos sector size 256
Configuration Error Code $0042

Data Density of media (S-single,D-double)} S >

(Double-sided hard invalid)
>C

Interactive Mode

Upon entry to interactive mode, the current values of all configuration
attributes and parameters for the specified drive are displayed. For a detailed
description of disk configuration attributes and parameters, consult the
VERS2dos Data Management and Program Loader User's Manual, RMS68KIO.

The user is prampted for changes to the current values of all configuration
attributes. The prompt for each attribute contains a description of the
attribute and its current value in mnemonic form. The user may change the
attribute by entering one of the mnemonics given in the prompt, or only a (CR)
may be entered. If only a (CR) is entered, the current value of the attribute
is retained and the prompt for the next attribute is issued. When either a
(CR) nor a valid mnemonic is entered, the input is rejected and the same prompt
is reissued to obtain new data.

Mext, the user is prompted for changes to all configuration parameters in
similar fashion. The prompt for each parameter contains a description of the
parameter and its current value in decimal. The user may enter a new value for
the parameter, or only a (CR). If a new value is entered, it is assumed to be
decimal unless preceded by a *$' for hexadecimal. If an invalid digit for the
specified base is entered or the value contains more significant bits than the
maximum number specified in the prompt, the same prompt is reissued to obtain
new data. If only a (CR) is imput, the current value for the parameter is
retained and the prompt for the next parameter is issued.

After the user has been prompted for all parameters, the user is prompted again
€or changes to the configuration attributes.

Interactive mode may be exited only by entering one of the following in response
to any of the prompts:
Q' or 'g"' ~ Exit interactive mode and terminate the utility without
mounting the disk or changing the current or default
configurations.

ICY or ‘c' - Exit interactive mode and attempt to configure the drive with
the user-specified confiquration data.

473




MOUNT Utility Example ~ Interactive Mode

Data Density of media (S-single,D-double) D
Data Density of media (S-single,D-double) D

> (Invalid attribute value)

>
Track Density of media (S-single,D-double}D >

>

>

'Qix

§ (Valid at“vibute value)
S-Single or D-Double sided diskette D >(CR)
Media format (M-Motorola,I-IBM standard) I >(CR)
Physical sectors/track on media(8 bits) 16 > 257  (Number too large)
Physical sectors/track on media(8 bits) 16 > 280 (Invalid decimal digit)
Physical sectors/track on medie (8 bits) 16 > $8Z (Invalid hex digit)
Physical sectors/track on media(® bits) 16 > §F
Number of cylinders on media(lé bits) 80 > 25
Interleave factor on media(8 bits} 1 >{CR)

Bytes/physical sector on media(l6 bits) 256 > 35768

Data Density of media (S-single,D-douile) D >(CR)

Track Density of media (S-single,D-double)S > (CR)

S-Single or D-Double sided diskette D >(CR)

Media format (M~Motorela,I-IBM standard) I >(CR)

Physical sectors/track on media(8 bits) 15> 16

Nuvber of cylinders on media(lé bits) 25 >(CR}

Interleave factor on media(8 bits) 1 >(CR}

Bytes/physical sector on media(lé bits) 35768 > 65539 (Number too large)
Bytes/physical sector on media(l6é bits) 35768 > 16

Data Density of media (S-single,D-double) D > Q

4-74







4.2.17 Patch Utility (PAICH) PATCH

The PATCH utility allows disk-resident files in executable form (load module
files) to be changed without need for editing and reassembling the corresponding
source files. Changes are accomplished by entering hexadecimal or ASCII litepal
information, or assembly language statements, into the appropriate memory
locations. The versatility of the utility is enhanced by a command structure
that offers several means by which memory location contents are displayed and
changed. Checksums are also calculated over corresponding affected and
unaffected memory ranges to aid verification of change accuracy. The utility
may be used to modify any contiquous load module file. An example of PATCH use
is shown in Figure 4-3.

If the input to the PATCH utility is a chain file, the user may comment the

chain file for documentation purposes by putting an asterisk (*) in the first
colum of any documentation input.

PARTCH Command Syntax

PATCH <filename>
where:
filename Is the name of the file to be changed. Extension .LO is default.
The PATCH utility responds to the command entry by displaying a greater than ()
symbol, indicating that the user may either exit the utility or enter the

display/change mode. Following the prampt, any of the subcommands described
below may be entered.

Quit Subcommand Syntax (QUIT)

>QIUIT]
where:

Q or QUIT Is the subcommand for quitting the PATCH utility and returning
control to VERSRdos.

Before returning to VERSAdos, PATCH displays the following message:
CHECKSUM = XXXyyyy

where xxxx and yyyy are each the sum of the values in all modified bytes in the
patched load module; xxxx is the sum of the values as they were before
modification, and yyyy is the sum of the values after modification. If the
originator of a patch provides this checksum along with the patch, anyone who
repeats the patch may verify that he has performed it correctly by checking that
his checksum value matches the originmal.

475




PATCH

Set Rddress Offset Subcommand Syntax (0)

s 20 <offset>

where:
o Is the Set Address Offset subcommand maemonic.
offset Is up to eight digits (hexadecimal assumed; leading § is

optional).

The Set Address Offset subcoswmand is used to set or change an address offset ur
to display the current offset value. BAn offset supplied by this subcommand is
automatically added to the address specified on the display/change mede entry
cormand line (described below) before execution of any subsequent display/change
mode command. For change or debugging ease, displayed addresses will include
both the user reguested address and the offset address.

Use of an offset is convenient when debugging a routine whose listing addresses
do not match the logical machine addresses. An example would be a subroutine
assembled with a listing address of zero and a logical starting address (found
from the link map) of $546. Debugging this routine would be facilitated by
setting an offset address of $546, using the command "0 546". Now, for example,
keying in the Patch subcommand *M 100" opens the byte at location $100 plus
$546, or $646. The displayed address will include the listing address of $100
and the actual address of $646. The dollar sign ($) is optional when entering
the offset value, since hexadecimal is automatically assumed.

Once set, an offset remains effective until changed by execution of another Set

2ddress Offset command. To obtain display of the current value, simply key in
the command *0". The offset value is not changed.

Dispiay/Change Mode BEntrv Subcommand Syntax (M)

> <hhhh>[;DI]
where:
M Is the Display/Change Mode Entry subcommand mnemonic.
hhhh Are hexadecimal digits representing the address of a memory

Jocation whose contents are to be displayed and/or changed. The
dollar sign ($) preceding hexadecimal data is optional.

DI Is required when invoking the assembler and disassembler option.

Display/Change Mode without Assembly/Disassembly

Following entry of the M subcommand, the specified location address is displaved
on the next screen line followed, after a space, by the location contents in
hexadecimnl and, again after a space, by the ASCII character representing the
contents, if displayable. The latter display is provided as an aid in
visaalization when teut such as a message is being modified or added to a
program. Undisplayable codes are represented by a single gquotation mark, a
pericd, and another simgle guotation mark: '.°'. The user should note that the
cursor remaing on the same line a space apart from the preceding character. BAny
of the display/change modes may now be used, as follows:

4-76



PATCH
Mode 1 - Sequential Display/Change. Hexadecimal Entry with Continue.
<he.o.h>

where: h...h is a string of up to 50 hexadecimal digits to be entered into
sequentially higher memory locations starting at the address displayed at left.
Execution is initiated automatically by entering the fiftieth digit or, at any
point in the string, by a (CR}. The address one higher than that of the last
changed location is displayed on the next line of the screen. Further use of
the display/change mode can now be made.

Mode 2 - Seguential Display/Change. Hexadecimal Entry with Return.

<heo >
where: h...h is a string of up to 50 hexadecimal digits, and " is a circumflex
(hex S5E} . &ction is similar to that of Mode 1 except that following execution,

the address one lower than that of the first changed location is displayed on
the next line. Further use of the display/change mode can now be made.

Mode 3 - Seguential Display/Change. ASCII Entry with Continue.

1Co o o>

where: 'c...c' is a string of up to 50 ASCII characters directly preceded by a
single quotation mark (hex 27) and directly followed by a single quotation mark
(hex 27). Action is similar to that of Mode 1 except that codes for the
specified ASCII characters are entered into sequentially higher memory locations
starting at the displayed address at left on the command line. In order to
arbed an apostrophe within a string, two consecutive apostrophes must be
entered.

Mode 4 - Sequential Digplay. ASCII Entry with Return.

{Ceool>'”

where: ‘c...c' is a string of up to 50 ASCII characters directly preceded by a
single quotation mark (hex 27) and directly followed by a single quotation mark
thex 27), and " is a circumflex (hex S5E}. A&ction is similar to that of Mode 3
except thet following execution, the address one lower than that of the first
changed location is displayed on the mext line. Further use of the display/
change mode can now be made.

Mode 5 - Sequential Display. Single Step or Contimuaous Scroll.

Cr)
A& carriage return keystroke can be used alone to display the address and
contents of the next higher location in hexadecimsl and ASCII representation on
the next screen line. For guick review of the contents of a memory range, the

return key can be held down to cause a scroll upward display of addresses and
contents.

477



PATCH
Mode 6 - PATCH Utility Prompt Recapture.
« (CR)
Entering a period followed by a carriage return at any time while in the
display/change mode causes the PATCH prompt to be displayed on the next screen

line. The display/change mode can now be reentered or the QUIT command used to
exit the utility.

=PATCH_WORKFILE<CR> Call PATCH.
>M GGEF<CR> Enter display/change mode.

6GGEF 44 ‘D' A23BA4A<CR> PATCH mode 2 coramand entry for
I ] return to location immediately prior
= {0 first byte changed.

Change data in three successive

locations.

GOGEE 4E 'N' <GCR> -  Display address and contents of
next memory location.

@GEF A2 ' .' <CR>

6eFe 3B ;' <CRAR>

$6F1 A4 . *‘LOGICAL UMNIT_ #1 ' <CR>—e Entercharacter string.

6t16e¢ BS5 *.' .<CR> A period/CR entry returns the >
prompt. Further PATCH commands

>next command can now be entered.

FIGURE 4-3. PATCH Utility Example

Display/Change Mode with Assembly/Disassembly

When the optional ;DI argument is included on the M subcommand line, assembly
language can be used in a patch. The code at the specified address is
disassembled and displayed, and a prompt appears to allow entry of replacement
code.

An offset may be utilized with this instruction as follows:
a. It is automatically added to the address in the subcommand M <hhhh>;DI.
b. It may be added to any address within an instruction by including a '+0°
in the instruction. For example, to patch the following code in at
location $300:
LER TABLE , A0
BLIP ADD.L #7,80

CMP.B $50D, (20)
BNE BLIP

4-78



PATCH

Assuming TABLE is at address $50, the following code could be entered to

PATCH:
O 300 (Set the offset to $300.)
0;DI (Start modifying at the offset.)
LEA $50(PC) ,A0 {Note (PC) specified explicitly.)
ADDQ.L #7,A0 (Note quick form (Q) specified explicitly,)
CMP.B #S0D, (A0)
BNE O+4 (Branch to the value of offset +4.)

Because the offset was used in the BNE instruction, the code may be entered
anywhere in memory just by using a different offset.

The following points should be considered when using the assembly/disassembly

option:

Disassembler:

Ao

If what lies at a particular locaticn in memory is a valid form of some
instruction, the disassembler will return that instruction. This may
happen even if the location contairs ‘data'. If it is not a valid
instruction, the disassembler returns a DC.W $xxxx (always hex),
regardless of whether the data was defined in bytes, words, or long
words.

The disassembler makes the decision whether to represent a numeric value
within a disassembled instruction in decimal or hex based upon wh- cher or
not it thinks the value repr:sents an address. Would-be addresses are
displayed in hex; everything else is in decimal. For example,

MOVE.L #51234,$5678
disassenbles to:
21FC000012345678 MOVE.L #4660,$5678

Note that the hexadecimal form of decimal 4650 can still be readily found
by looking at the hex for the instruction.

The disassembler returns BT for BRA (BRA and BT are both valid mnemonics
for the same opcode). Similarly, DBF is returned for DBRA.

For some instructions, there is more than one assembly language
equivalent. The disassembler may choose a form different from the one
which generated the code originally. For example,

MOVE.L  #10,Al
and MOVEI.L  #10,Al

generate the same code. In this case, the former would be chosen as the
disassembled form.

4-79




PATCH

Assembler:

de

(=1%

£.

The one-line assembler is not symbolic, and does not support macros or
structured counstructs. Instructions such as BTSTW and BCLRW, which
existed in those MC68000 processors with R9M and prior mask sets but do
not exist in current mask sets, are not supported. Users not dealing
with software written for the experimental versions of the MC68000 need
not be concerned with this restriction.

If the "quick" form of an instruction is wanted, it must be specified.
For example,

MOWE.L #3,D0 is a 6-byte instruction, whereas
MOVEQ.L  #3,D0 is a 2~byte instruction.

If the PC-relative addressing mode is wanted, it must be specified. For
exanmple,

LER $3F0,A0 encodes $3F0 as an absolute address, whereas
LEA S$3FO(PC) ,A0 encodes $3F0 as a PC-relative value.

Operand expressions may include references to the current location
(character “*%) and the current PATCH offset (letter "0"). Numbers may
be expressed in hex (precede with a "$" character) or decimal, which is
the default in all cases. ASCII strings are also supported. The only
valid operators in an expression are + and -. The following are examples
of valid statements for the one-line assembler in PATCH:

BRA.S * 4524
MOVE.L #255-32,$1F0+0
CMP.W #'SA' ,24 (A0)

The offset is NEVER applied automatically to an address in an
instruction. If you wish it applied, you must specify "“+0".

The BHS and BLO instructions are not supported. Use BCC for BHS, and BCS
for BLO.

Comments may be put at the end of a line, or on a line that begins with
an asterisk.

The only pseudo-op accepted is DC.W, and the operand must fit into 16
bits.

4-80







4.2.18 Print Dump Utility (PRIDUMP) PRIDUMP

The Print Dump utility is an adjunct to a system function commonly referred to
as "post mortem dump®, but more accurately termed "task dump”. Task dump is
called by the system when a task aborts and either the I option is set for the
session (OPT I -- refer to Chapter 3) or the task dump attribute is set in the
task's loader information block. (The task dump attribute is incorporated in a
load module by linking with the linker's D attribute option set.) Task dump
provides the capability which gives the user the choice of dumping (or not) his
memcry space te a file on disk for examination. All or portions of the dumwp
file can then be displayed or printed by using the PRIDUMP utility.

When an abort occurs, a display of the contents of the processor registers will
appear, followed by an interactive dialog:

a. TOMP: DO YOU WANT A DMP? (Y/N)>
Keying in an N returns control to VERSAdos; a Y causes a second and
third display:

b. TDMP: DEFAULT DUMP FILE IS (VOLUME IDj :{user no.) .TASKDUMP.DUMPmunss.DU

where:

volume ID Is the user's default volume ID.

user no. Is the user®s logon rumber.

TASKDUMP Is the default catalog name.

DUMPmmss Is the default file nawme made up of DUMP plus the
minutes and seconds of the system clock at time of
abort.

DU Is the default file name extension.

c. TDMP: ENTER NEW FILENEME OR HIT CR >
Use of a file descriptor for the dump file comprised of all default
values of b. ahove is obtained by keying in a (CR}, or the user may
specify the desired values in any fields in the file descriptor.

d. TDMP: DUMP FILE IS (vel. ID}:(user no.).{catalog).(filename).(extension)
This is the descriptor under which the dump is created, and she- 2 be
noted for later access.

Using the Print Dump Utility

Once the dispiay in d. above is reached and the dump file descriptor noted, the
utility can be invoked to print all or portions of the dump file.

4-81




3
:
t
:
f
1

PRIDMP Command Syntax

PRIDUMP <filename>[,<{device>] [;<options>]

where:

filename

device

options

Is the dump file descriptor established in c. above. Hote that
except for the file name field (which is reguired) in the file
descriptor, Print Dump will use the foullowing default values
for unspecified fields:

volume ID = user's default volume ID

user mmsber = user's default (not logon) number
catalog = TASKDUMP

extension = DU

All file descriptor fields, whether specified or obtained
from defauit values, must match those of the dump file
descriptor in order for the Print Dump utility to access the

dump file.

Is §PR for printed ocutput or # for output displayed on the
user's logon terminzl. If the device field is not specified,
# is used.

May be one of the following:

A - Outputs all of the dump task's memory space plus the
Task Control Block information (i.e., all the
information retained by the dump).

R - Qutputs all of the dump task's read/write memory
space plus the Task Control Block information. Does
not output memory segments with the read-only
attribute.

If the A or R option is specified, the reguirements of the
command line are provided, and control is returned to
VERSHdoS «

o option - Specifying no options resuits in the Print Dump
ctility entering the interactive mode.



}
%
-
%

The Print Dump Interactive Mode

Display of the prompt PRID:> indicates that the Print Dump interactive mode has

been entered. BAny of several interac:ive mode commands described below can now

be used.
PRID :>ALL

PRID>RAM

PRID:D>ICE

Provides the same output as the A option.

Provides the same output as the R option.

Cutputs Task Control Bleck information.

PRID:>SERY <{segname> Outputs the contents of the specified segment.

where:
segname Is written as one to four characters of which the first
character must be aiphsbetic and the remaining characters
alphammeric. Alphabetic includes the characters “A" through
®Z", "." (pericd), " " (underscore}, and "&" (ampersand).
alphanumeric includes all of those, plus 0% through *9" and
“$® (dollar sign). Refer to the MG68000 Family Linkage Editor
User's Manwal, MESKLINE, for more segment name information.
PRTD: >REGS Cutputs the contents of the dumped task's registers.
PRIDOMD <{address> [,<offset>] [<sp><{length>] Cutputs the contents of a block
where:
address Is the point at which ocutput is begun.
offset iIs a hexadecimml]l value that is added to <address>.
sp Is a space and is reguired if a length is specified.
lemgth Is a bhewadecimel value defining the size of the memory block

to be output. If not specified, the default value 16 is
used.

4-83




FRTDUMP

PRID:AD <addrl>[,<offset>] [<sp><addr2>] Outputs the contents of a block of

where:
addrl

offset

sp
addr2

MEMOLY «

is the address at which output is begun (subject to
modification by any offset specified).

Is a hexadecimal value that is added to <addrl> to determine
the starting address.

Is a2 space and is reguired if <addr2> is specified.

Is the address at which output is stopped. If not
specified, 16 bytes are output.

PRID:>OFFS <offset> Specifies a hexadecimal value that is added to <address>

or <addrl>, respectively, for all subseguent MD or AD
command lines. This value is ignored if an offset is
specified on an MD or AD command line.

PRTD :>0UTP <device> Charges a previously specified ocutput device to the

PRID SHELP

PRID :>QUIT

device specified in the device field.

Prints a summary of commend line format and interactiwa
mode commards for PRIDUMP.

Terminates execution of any PRIDUMP command end returns
control to VERSAG0S.

4-84







4.2.19 FRename Utility (RENAME) RENPME
The RENEME utility is used to give a file a new name, a new catalog name, oOr
both and, if desired, assign a new protect Xey. The user number may also be
changed if RENMME is executed while logged on as user (.

RENBME Command Syntax

REMAME <input field> . <output field>[,<list deviced]

where:
imput field May be any file name.
catput field May be any file name.
list device May be any file name or device name. The default value

is the session terminal. If a file is specified without
extension, the default is .LS.

The “wildcard® asterisk (*)} may be used as described under the COPY utility.

RENAME Utility Examples
Example 1 -
=RENAME TEST.SA,PAYIN.SA{AARB)
The file name of the input field file and its file protection code (the public

read code PPPP need not be specified) are changed to PAYIN.SA and AAEB,
respectively. The defaults are used for volume ID, user mumber, and catalog.

Example 2 -
=RENAME WORK.SA (EBCC) ,USEIT.SA(PPPP}
The file name of the imput field file and its file protection code are changed

to USEIT.SA and PPPP (owner only can write; any user can read), respectlvely.
The defaults are used for volume 1D, user mmber, and catalog.

Example 3 -
=RENBME *.SA,*.FT

Default values are used for the volume ID, user mmber, and catalog fields. BAny
file having the extension .SA is given the extension .FT.

 Example 4 -

=REMAME CAT1.*.*,PAY.*.*

The default value for the volume ID and user number fields are used. The
catalog field for all files of catalog name CATL is changed to PAY.

4-85



Example 5 -
=RENAME *.* (ARBR) , (CCDD)

Default values are used for volume ID, user number, and catalog name. The
protection field of those files belonging to the default user and having the
value BABR is changed to the value CCDD. The output file name cannot be
specified if only the protection codes are being changed.

Example 6 -
=RENAME TEST.SA(AAAA) , (PEPP)
Default values are used for volume ID, user number, and catalog fields. The

protection field of the file is changed to public write/read. The output file
name camnot be specified if only the protection codes are being changed.

Example 7 -
=RENBME T* % L% *
Default values are used for volume ID, user muwber, and catalog fields. All

files belonging to the default user which have a file name beginning with T have
that character changed tc A.

Example 8 -

=RENMME TEST.SA,PAYIN.SA,LIST
The file name of the imput field file is chamged to PAYIN.SA. All displayed

messages are directed to the file LIST.LS. Defaul: values are used for volume
ID, user mumber, and catalog fields.

4-86




'REPAIR




4.2.20 Repair Utility (REPAIR) REPAIR

The REPAIR utility detects errors in a VERSAdos disk or diskette which has bad
disk control table information. Errors are found and identified and an attempt
is made to correct errors with minimal loss of data. REPAIR may also be run to
change disk contents or tc dump sectors or disk structures. REPAIR can be run
to process the entire volume or only a particular file on the volume. REPAIR
may also be executed to recover deleted files, unless the files®' Data Blocks
(DB's) and File Allocation Blocks (FAR's) have been reallocated to other uses
after the files were deleted.

REPAIR Command Syntax

REPAIR <device>[,#PRn] [;<option>]
or

REPAIR <vol>:[<user no>][.<cat.filename.ext>][,#PRn] [:<option>]

where:
device Is a device mnemonic representing the device on which the
disk resides. Volume repair is performed -- i.e., all the
structures on the disk are checked and processed by REPAIR.
vol:user no Is a volure name followed by a colon and opticnally by a user

mmber. Volume repair is done only if a <cat.filename.ext>
is not specified. If <vol>: only is specified (no <user no>
or filename}), the default <user mo> is that assigned to the
disk when initialized.

cat.filename.ext Is an optional field consisting of a catalog name, a file
name, and an extension, each preceded by a period. If
specified, file repair is done. Only the SAT, primary block
entry, and the file's DB's and F&B's, if any, are checked and
processed. Other structures on the disk are assumed to he
correct.

#PRn Is the listing device; if omitted, default is # (display on
CRT screen).

options May be omitted for default processing in the interactive
mode, or may be one of the following characters:

N - Non-Interactive Mode (NIM). In this mode, no disk
structures are displayed, and the user camnot meke
changes unless an error is found since execution proceeds
avtomatically. If an error is found, one of three
actions is taken:

a. For a critical error, execution terminates. The
wger should then enter the interactive mode
(default: no options] to make the appropriate
correction.

4-87




REPAIR

b. The messages “ER: <problem>® and "“R: <corrective
action>® are displayed, followed by the request
"REPAIR (Y/N)?%.

. The user may enter Y to obtain the indicated
change.

. The user may enter N to terminate or obtain
display of an alternative course of action,
according to the nature of the error.

c. The message "R: <corrective action>® is displayed,
with the utility automatically meking the indicated
change.

C - Check only mode {not valid with R option). In this mode,
the utility proceeds as in the non-interactive mode,
displaying a message and terminating when an error is
encountered. When both the C and N options are
specified, the C option takes precedence. Any 1/0 error
causes termination. Check only mode should be tried
first if disk errors are suspected.

R - File recovery mode (not velid with the C opticn). In the
file recovery mode, when only a volume name is specified
on the REPABIR command line, the PDE of each deleted file
is shown and the user is given the choice of asking the
utility to attempt recovery or of skipping to the next
file. When the optional field <user no> <.cat.file
name.ext> is fully specified on the REPAIR command line,
attempted recovery of the specified file is automatic.
In such cases where deieted files of the same name exist
{possible because the first character of the name of a
file is zeroced on deletion), the utility offers the
choices of skipping or of asking for a recovery attempt.
If REPAIR with the R option is invoked for a file which
is found (i.e., which has not been deleted), no action is
taken.

(o option) - Default Processing - When no option is specified, the
utility operates in the Interactive Mode (IM) under user
control. All deleted files are skipped. Durps of
gectors or structures may be made in this mode.
Considerable knowledge of VERSAdos disk and file
structure is required to use this mode effectively;
therefore, its use is not recommended for first-time
users. If #PR is specified in the command line, it is
ignored in this mode.

After the command line has been correctly entered, REPAIR identifies itself with
the messages

VERSEdos REPAIR UTILITY - VERSION x




REPAIR

Suggestions for Using the REPAIR Utility

Four diagrams showing disk and file structure (Figures 4-4 through 4-7) and a
list of field names are given in this section for the user's reference. It is
recommended that the N option be used in the beginning until the disk and file
structures are learned.

If allocation conflicts are detected on the disk ard it is not clear to which
other disk structure(s) the sectors have also l<en allocated, execution should
be terminated and a note made about the Physical Sector Number (PSN) of sectors
with allocation conflict. The utility should be run again in interactive mode,
and the given sectors marked allocated (A $<psn>,n) in the Sector Allocation
Table (SAT) during the UPDATE SAT loop, described later in this section. Then
an error message will be given at the first reference to the same sector(s). It
is then up to the user to determine to which structures the sector(s) actually
belong. Note that REPAIR assumes that the first association is correct -- see

following paragraph.

The utility will not recognize a space allocation conflict until a second
structure tries to claim the same space. The assumption is made that the first
association is correct and there is no allocation error because no information
exists for structures not yet processed. If multiple allocation errors are
suspected, the structures should be examined as they are displayed to discover
such errors. The utility will normally give error messages about content errors
when multiply allocated sectors do not belong to the disk structure at hand, but
it is possible for the wrong sectors to pass the tests for the structure being
examined.

Any severe disk problems should be analyzed by an adequate dump of the problem
area. Since the main purpose of the utility is to detect errors, the repair
process is improved if the user can supply corrections (often the utility
deletes or truncates some structure to clear an error unless directed to do
otherwise) .

A particular REPAIR utility version should correspond to the version of VERSAdos
in use, since the utility assumes certain reserved fields in the disk
structures. If a reserved field =rror is discovered, the user is given the
choice of inhibiting (or not) the utility from zeroing out the field (then
terminating or skipping the file if doing file check). The version
incompatibility must then be resolved before the disk can be processed.

If file structures are deleted during file repair, some of the sectors may not
be deallocated in the disk SAT because the utility did not process them.
Therefore, it is recommended that a disk check be run to check the SAT after
file repair involving extensive truncation or deletion of data.

4-89




REPAIR

Disk Structures

Listed below are mnemonics representing various disk structures.

VID Volume identification block, always sector 0, length of one sector.
SAT Sector allocation table, or map, variable length.

CFGA Configuration area (media format information), variable length.

SDB - Secondary directory block (list of catalogs), length of one sector.
SDE Secondary directory block entry (catalog entry).

PDB Primary directory block (list of file names), length of four sectors.
PDE Primary directory block entry (file entry).

FAB File allocation block (list of data blocks), variable length.

DB Data block (block of sequential records), variable length.

HDR Header (first few bytes of each SDB, PDB, or F¥AB); contains linkage

information to next structure of same type. FAB's have forward and
backward links; other structures have only forward links.

SLT Sector lockout table.

DTA Diagnostic test areas.

Several separate test routines are performed during REPAIR processing. They
are:

VID CHECK Performed unless file repair only is selected. During this
test, the volume identification block sector is checked. All
remaining structures are reachable only if the VID is intact and
readable. A segment is allocated to accommodate two SAT buffers
for the disk and allocation SAT's.

SAT CHECK Performed unless file repair only, in NIM (N option), is
selected. The SAT on disk is referred to as “"disk SAT" -- it
contains the sector allocation map for the disk. Under normal
circumstances, the disk SAT is checked and updated as necessary
and at the end of REPAIR, it is written back to disk if changed.
If the SAT is in poor shape, the user has the option to have
REPAIR re-create it; then the disk SAT is ignored and the
allocation SAT is written to disk at end of REPAIR. (The SAT
camot be re-created if only file repair is done in NIM because
then only the file's sectors are checked and processed for
allocation -- the resulting allocation SAT is not complete).

Another SAT-type map is built by REPAIR to keep track of sectors
that have been processed and have been allocated so far. This
SAT is checked for multiple allocation errors. It is referred
to as "allocation SAT". Note that in NIM if file repair only is
done, then REPAIR will not be able to detect multiple allocation
errors except among the sectors associated with the file.

4-90




REPAIR

CFGA CHECK
0B CHECK
FDB CHECK
FILE CHECK

EEQ te Loop

In the interactive mode, an “update loop™ is entered for file structures VID,
SAT, SDB, PDB, PDE, DB, and FAB as they are checked during the applicable
sections of the REPAIR process. The update loop is usually preceded by a dump
of the structure, an error message, and/or a REPAIR action message ("R:...").
The query UPDATE xxx? is displayed, where xxx is the appropriate disk structure
mnemonics.

The user must give one of the following responses to each UPDATE xxx? request
(note that for each particular structure, there is some variation in allowed
response) :

Q - Always terminates REPAIR with the message REPAIR TERMINATED. Aany
sectors updated in memory are written to disk. If I/0 error, then
error message is given ("IO ERROR, DO = x FROM WRITE xxx, PSN = x",
where xxx is a disk structure mnemonic); otherwise, the error is
ignored.

R - If given as response to a proposed action for error ("R: ... "),
then the indicated repair is enabled and the update loop is
temminated; otherwise, WHAT? is sent.

D - Deletes the current structure and terminates the loop. If the
structure contains a link to the next structure of the same type,
the link is used to continue prccessing (the user may have changed

this field from its original value -- the sectors of the current
structure are not written to disk no matter how much they were
changed.)

A - Allocate - used only in final SAT CHECK when SAT is not to be

recreated by REPAIR.

D S<psn>[,n] -~

Delete or deallocate sectors from SAT, where <psn> is a physical
sector number (in hexadecimal) within the SAT, and where n (if
given) is the decimal rnumber of consecutive sectors affected. n
defaults to 1.

A $<psn>[,n] -
Allocate sectors in SAT, where <psn>[,n] are as above.

$[,n] -~ Damp the structure or, if n (decimal) is given, dump nth sector of
the structure (if n iz greater than the length of the structure,

then n = 1 is used; in PDE update loop, n is ignored). Display to
listing default (LDF), usually console screen.

4-91




REPAIR
$<psn>[,n] [#PR] -

Dap any sector(s) to the listing device, where n is the decimal
mumbeyr of consecutive sectors to be dumped (default is 1).

S<psn> <offset> xxX[,xx]cece =

Update a sector of the structure, where <{psn> is as above, <oifset>
is a hexadecimal value (0-SFF), and xx is either a hexadecimal value
(0-SFF) or a period (.} followed by an ASCII character. The new
values specified (xx[,xx]...) replace consecutive bytes starting
with the byte at the given <offset> in the specified sector.

offset> xx[,xx] -
Same as immnediately above, but changes are always made to the first

sector of the structure. Here <offset> must start with a numeric
character (its value must still be (-FF). Not allowed in VID check.

N - Terminates loop and turns off interactive mode until a later
structure is processed or until an error is discovered.
C - Terminates loop and contimues as if in the check only mode until an
error is encountered or until execution is completed.
(CR} (Carriage return only.) Terminates loop.
NOTES

This version of the REPAIR utility dumps sectors directly from disk;
only the current structure is dumped as it appears in memory. There-
fore, other structures having changes made by the utility that are
also memory resident may not be displayed.

If REPRIR is used to update the structure of the disk, REPAIR should
be performed on the entire volume with the C option. This will
ensure the integrity of the new disk structure.
Error messages to invalid UPDATE xxx? responses are:
WHAT? - If syntax error, or unallowed response.

PSH ERROR

If PSN is out of range, only the current structure can be
updated.

VALUE ERROR - If byte value for sector change is invalid.

OFFSET ERROR If offset is past sector boundary or too many new byte values
are given -- updates are allowed only within the specified

sector.

The BREAK key will abort REPAIR with "BREAK! - REPAIR ABORTED". Sectors changed
in memory are not written to disk.

4-92




REPARIR

In IM during final SAT CHECK, all unused sectors marked allocated are listed.
If some structure had to be deleted or trumcated because of bad links or other
problems, then by dumping the unused allocated sectors the user may recognize
sectors that belong to the deleted or truncated structure. The utility can then
be reexecuted to reconstruct the structure.

During REPAIR processing, if the volume name in the VID or a file name or an
extension in the PDE is in errorx, the utility will reguest entry of a
correction. The erroneous name or extension will be displayed with periods (.)
replacing any non-alphanumeric characters. When meking the new entry, only the
exact number of characters input will be replaced in the erronecus name or
extension, with characters beyond those input remaining unchanged. For example,
if a file name should be PROGREAM and it appears as PR....M, at least the
characters PROGRAR must be entered. If only the missing characters (GRA are
entered, the name would become OGRA..M and would still be in error.

Disk and File Structure Tables

The tables below contain the name (symbol), offset in bytes, length in bytes,
and description of each field within the VERSAdos disk and file structures.

VOLIME ID BLOCK (VID) - always Sector 0

Symbol Offset Length Field contains

VIIDVOL 0 4 Volume ASCII identifier

_ VIDUSN 4 2 User mumber

VIDSAT 6 4 Start of SAT

VIDSAL 10 (Sa) 2 Length of SAT

VIDSDS 12 ($C) 4 Secordary directory start

VIDPDL* 16 (S10) 4 Primary directory PSN list start
VIDOSS 20 ($14) 4 Start of Initial Program Load (IPL) file
VIDOSL 24 ($18) 2 IPL length

VIDOSE 26 ($1a) 4 IPL execution address

VIDOShE 30 (S1E) 4 IPL load address

VIDDTE 34 ($22) 4 Generation date

VIDVD 38 ($26) 20 ($14) Volume descriptor

VIINNO 58 (S3A) 4 Initial version/revision

VIDCHK 62 (S3E) 2 ViD checksom

viDoTP 64 (S40) 64 (S40) Diagnostic test pattern

VIDDTR 128 ($80) 4 Diagnostic test area directory
VIDDAS 132 (s84) 4 Start of dump area

VIDDAL 136 (388) 2 Length of dump area

VIDSLT 138 (S8A) 4 Start of SLT

VIDSLL 142 ($8E) 2 Length of SLT

VIDCAS 144 ($90) 4 Configuration area starting sector
VIDCAL 148 (594) 1 Configuration area length

VIDIEC 149 ($95) 1 IBC format disk type code

VIDRSL 150 ($96) 98 (562} Heserved

VIDMBC 248 (SFB) 8 VERSARdos disk (ASCII string “ENORMALCS™)

*Curyently not implemented; =0

4-93




REPAIR

Configuration Area (CFGA)

The configuration area contains a disk configuration parameter block identical
to the disk configuration IOCB used for Configure, Configure Default, and
Configuration/Status requests (see VERSAdos Data Management Services and Program
Loader User's Mamual). This block contains the configuration in effect when the
disk was initialized. This information is used to set up the current
configuration when the disk is mounted to allow data access.

DISK CONFIGURATION BLOCK

SYMBOL  OFFSET  LENGTH CONTENTS
I0SDST DEVICE STATUS
OR OR
IOSCEC 0 1 CONFIGURATION ERROR CODE
I0SCIP 1 1 CHANNEL TYPE
I0SDTP 2 1 DEVICE TYPE
IOSDRC 3 1 DRIVER CODE
IOSA™ 4 2 ATTRIBUTES MASK
IOSPRM 6 2 PARAMETERS MASK
I0SATW 8 2 ATTRIBUTES WORD
IOSREC  10($3) 2 VERSAdos SECTOR SIZE
IOSRSZ  12($C) 4 TOTAL VERSAdos SECTORS
| IOSWIO  16($10) 4 WRITE TIME-OUT (UNUSED)
| IOSRTO  20($14) 4 READ TIME-OUT (UMUSED)
| IOSSPT  24($18) 1 PHYSICAL SECTORS PER TRACK ON MEDIA
| IOSHDS  25($19) 1 NO. OF HEADS ON DRIVE
| IOSTRK  26(S1A) 2 NO. OF CYLINDERS ON MEDIA
IOSILV ~ 28(S1C) 1 INTERLEAVE FACTOR ON MEDIA
IOSSOF  29($1D) 1 SPIRAL OFFSET ONM MEDIA
I0sPsM  30($1E) 2 PHYSICAL SECTOR SIZE OF MEDIA
I0SPSD  32($20) 2 PHYSICAL SECTOR SIZE OF DRIVE
IOSTRRD  34($22) 2 NOMHER OF CYLINDERS OM DRIVE
IOSPCOM  36(524) 2 PRECOMPENSATION CYLIMDER § (usually .5 total cyl)
10SSPTD  38($26) 1 PHYSICAL SECTORS PER TRACK ON DRIVE
IOSDRSV  39($27) 7 RESERVED

-3
(=]
P
<
8
(2]

0($D8) UNUSED

£~94




REPRIR

Sector lockout Table {SLT)

The SLT is a contiguous segment of disk that describes the sectors on the disk
which have been locked out. The number of sectors in the SLT is meintained in
the VID and is determined by the mmber of sectors on the disk. Bach entry (six
bytes} in the SLT consists of two fields. The first field is four bytes and
contains the physical sector mmber (PSN} of the start of a lockout range. The
second field is two bytes and contains the mmber of contiguous sectors to be
locked cut. The first zero entry terminates the list. If no SLT exists, the
PSH of the SLT in the VID is set to zero.

Diagnostic Test Areas (DTA)

The DIA is one sector that describes the areas on the disk availshle to
diagnostic programs as read/write test areas. Each entry (six bytes) in the DTA
consists of two fields. The first field is four bytes and contains the physical
sector murber (PSH) of the start of a test area. The second field is two bytes
and contains the length of the test area. The first zero entry terminates the
list. If no DTA exists, the PSH of the DTA in the VID is set to zero.

SECONDARY DIRECTORY BLOCK (SDB} HERDER

Symbol Offset Length Field contains
SDBFPT 0 4 PSH of next SDB (zero if none)
4 12 (8C) Reserved (0)
SOBSTR 16 ($10) Start of first secondary directory entry

SECONDARY DIRECTORY ENTRY (SDE)

Symbol Offset Length Field contains
SDEUSK 0 2 User muamber
SDBCLG 2 8 Catalog name
SOVEDR 10 (Sa) 4 PSH of first PUB for catalog
(zero = empty entry)
SDBRCI 14 (SE) 1 Reserved
SDBESL 15 ($F 1 Reserved
PRIMARY DIRECTORY BLOCK (PDB) HERDER
Symbol Offset Length Field contains
DIRFPT [ 4 PO of next PDB (zerco if none)
DIRDSN 4 2 User mmber
DIRCLG 6 & Catalog name
14 (SE) 2 Beserved
DIRSTR 16 (510) Start of first primery directory entry

4-95




REPARIR

PRIMARY DIRBCTORY ENTRY (PDE)

Symbol Offset Length Field contains

DIFEIL (1] 8 File name

DIREXT 8 2 Extension

DIRRSI 10 (sm) 2 Reserved

DIRFS 12 ($Cy é File starting PSN (contiguous) or first

FAB pointer (noncontiguous)

DIRFE 16 (510} & Physical EOF Logical Sector Wumber (LSN)
| {contiguous) or last FAB pointer
{noncontiguous)

DIREOF 20 (S14) 4 End of file LSN (zero if contiguous)

DIREOR 24 ($18) 4 End of file Logical Record Humber (LRN)
{zero if comtiquous)

: DIRWCD 28 (S1C) i Write access code

DIRRCD 29 (S1D) 1 Read access code

DIRATT 30 (SiE) 1 File attributes

DIRLEBZ® 31 ($1F) 1 Last data block size (zero if contiguous)

DIRLEL 3z ($20) 2 Record size (zero if variable record

length or contiguous)

DIRRSZ 34 ($22) 1 Reserved

DIRKEY 35 ($23) 1 Key size (zero if m.ll keys or non-

Indexed Seguential Access Mode (non-ISEM))

DIRFAB 36 ($24) 1 FiB size (zero if contiguous)

DIFDAT 37 (825) 1 Data block size (zero if contiguous)

DIRDTEC 38 (S26) 2 Dete file created or updated

DIFDTEA 40 ($28) 2 Last date file assigned

DIRRS3 42 (S2n) 8 Reserved

- File attributes (DIRAIT} (bits 4-7 user defined)

Symbol Value Meaning

DRTCOM 0 Contiguous

DATEEQ i Sequential (variable or fized record length)

DATISK 2 Keyed ISEM - Mo duplicate keys

DRETISD 3 Keyed ISEM - Duplicate keys ailowed; mull keys allowed

* In current implementation, DIFLBI=DIRDET

1

4-96




REPAIR

FILE ACCESS RLOCK (FAB) HERDER

Symbol Offset Length Field contains
FRBFLK o 4 Pointer to next FRB (zero if none)
FABBLK 4 4 Pointer to previous FAB (zero if none)
FRBUSE® 8 1 Fraction of FAB in use
FABPKTR#* 9 1 [ength of previous FAB's last key

10 (Sa) FABPRY Last key in previcus FAB (zero if this

is first FAB)

FABSEG 10+FABPKY Start of first segment descriptor

®  Divided into 16 parts. 0 —> empty FAB - 16 ——-> full FAB

** Current implementation always has FABPKY=DIRKEY. Later implementations may
use partial key.

FAB SEGMENT DESCRIPTOR

Symbol. Offset Length Field contains

FABPSN )] 4 PSHl of data block start (zero if rest
of FAB empty)

FABREC 4 2 tamber of records in data block

FABSGS 6 1 Mumber of sectors in use in data block

FABKEY* 7 1 Key of last record in data block *#*

*  Current implementation always has FRBKEY=DIRKEY

** The key may not be egual to the last key in the data block, but it is always
less than the first key of mnext data block unless duplicate keys are
allowed. If in first FAB, FABPKY for first FAB has byte for byte
correspondence with length of keys established for file and values of bytes
are zZeros. '

Data Blocks (DB)

Data blocks can contain three different record types, none of which allows a
record to be split between data blocks:

FIXED LENGTH
VARLABLE LENWGTH
COMTIGUOUS

Fixed Length Records: The data content of the fiwed length record is specified

by the user. ‘There are no embedded control characters generated by File
Management Service (FMS). Any unused locations in the data block will be zeroed
o,

4-97



REPAIR

Variable Length Records: Variable length records have a Z-byte field, preceding
each record, which contains the number of data bytes, followed by the data. The
data portion of the record can be binary or ASCII. With ASCII specification and
a formatted write regquest, FMS will compress spaces. A space compression
character is indicated by a data byte having the sign bit (bit 7) set, while the
remaining bits (6-0) contain a binary mumber representing the number of spaces
to be inserted in place of the compressed character. FMS will automatically
expand these compressed characters into spaces when such files are read, using
formatted ASCII I/0. & zero filler byte is stored at the end of the data
portion of a record if the record length is odd. Any unused locations in the
data block will be zerced out.

Contiguous Records: Records for contiguous files (load modules) are 256 bytes
in length. The data content, completely specified by the user, contains no
embedded control characters generated by FMS.

Example 1 - Recovering a Deleted File

& file named TEST2.LO was inadvertently deleted from volume VOL2. Assuming no
files have been allocated in its space, the file is recovered as follows:

=REPAIR VOL2:2l..TEST2.LO .
VERSADOS REPAIR UTILITY -VERSION 032282
dedefe FILE m ek
00 45 53 54 32 20 20 20 4C
10 00 00 7A 00 00 00 00 OO
20 00 00 00 00 00 00 00 00
30 00 00 00 00 OC 03 8E O

UPDATEPDE?

00 54

UPDATEPDE?

Q
REPAIR TERMINATED

4 JEST2 [Dececes

sesdoecscssscsose

8888 v

g888
8888

00
Qo
00
0o

8888

0o
00
00
00

(V8]
2e88h

Since “deleting a file" destroys only the first character of the file name,
entering offset 00 and the ASCll character 54 restores the letter ™I to the
file name.

4-98




REPAIR

e
VID SAT
> CFGA
| SDB1 ™
PCINTS TO MAX. OP SDR2
15 CATALOGS
;
| CONTIGUOUS
PDB1 FILE
POINTS TO MAX. OF PDB2 ! BLOCK CONTAINING
20 FILES ENTIRE FILE, €.g.,
| A LOAD MODULE
|
i
FABL ' - DB2 DBl
,
]
g DB NON-CONTIGUOUS SEQUENTIAL
: OR INDEXED SEQUENTIAL FILE
FAB2 g DBR + 1
| s

FIGURE 4-4. VERSAIos Disk Structure

4-99




REPAIR

£103098 INOA ~ HOOTg A20300a10 Adeuwrid °G-~p TUNOIL
HOLOSS 40 N3
0L 0374 O¥3Z seuea 0458
vaLaua 0HLOWIG [ LvOHIO] GvSIOE AINMIO] Z5HMIO WA 280G | LLVHIO { GouNIa [aomuIg HOMIO v
3368 oses| azcs]  vacs| edes| @3 oacs] ogeel  vacs) cacs]  zuce
L]
AHING ¥OBHI SOTHIG 2610 S4bl0 18I0
5088 L vaes £ 0§, A 2ae8 L
¥ ¥
Lx3uia g0
28 N . s 898
= L«
{1NOD) A
£8uHIa
= 4 §
£ELUIO vaLauia 03,0810 | Lvauiaf ev4uia | Aawug | zsuuio WO
Ve 868 o) I ve$ £08 28 0cs V; —
AHING 267010 § Luveia §aouwia faomuia HOMIO 403410 34610
] B ) . v2$ \ 02§
v L)
$4uI0 1SHYIO 1X3HI0 U9
oLe vig 91 N 018§
y3avIH G3AUIEIY 010410 NSNYIO (2# 80d 10 NS WEOVIM
56 9 N 1d#uIa 0

{selid 02 oL dn 104 seiuT puy Jepesi Sujewos)

e e s e S T

4-100




=3

B8

N

10 14 i6

4 VTl i vinugs | ViDBHT

A ic 110

§ vinsaL | (P OF 1) § VIDFDL

134 118 {1A

i VIDOES ] VIDosL | VIDOEE

1e 122 126

i VIDOGA § VILLTE i

/

Vi VIND

:

1] ) 38 0 )
VIDW0o i VIEgH i

Lok il Kl
3
rg
3

b in GER oy e e an

#| 2
4-5 & &

fﬁ'i
.éu.
.§..

! VIDRSL (RESERVED)

'y e 5 & P

L N N e e .L i I N N e N I BT I

&
+

an

L * L 4 e

@
[ RSP}

ASCII STRING “EXORR.LS™

4
E 3

FIGURE 4-6. Volume Identification Directory - Sector

0

ie Gnrer i4 I
BEADER-=> | {(P@E OF SDB §1) H I
% % + = & 5 # & i
] i
; w eI ‘m [
{10 112 |
i SDBEN § SIBCLG ]
(373 fig (33 4 §20 i
i Spere [ Al ] E
] i
/ . /
/ . /
I . |
i i
B i#2 i
] Seumm 1 SecCle i
iea ) = P |
[ [ n g ST aemEL )

FIGURE 4-7. Secondary Directory Block — One Sector

" 4101

REPAIR




SCRATCH




4.2.2] Scratch Utility (SCRATCH) SCRATCH
The SCRATCH utility allows the owner of a disk or the system administrator (user

0) to erase the volume identification directory (sector 8) of a disk so that the
disk mey be reused. Optionally, a disk mey also be formztted.

SCRATCH Comsand Syntax

SCRATCH <imput field>
where:
imput field Is the device name of the drive in which the disk to be

scratched is mounted (e.g., #FD00, #FDO1l, or #HDOLl), or the
volume name of the disk to be scratched.

Scratch Ucility Examples

=SCRATCH #FDOL
OK TO SCRATCH (¥/N) FDOl? ¥ (Displayed if volume ID does nmnot
DO YOU WANT TO FORMAT DISKETTE (Y/N)? ¥ exist.)

[+ 4

OK TO SCRATCH (Y/N) FDOL VOLUME VOLN? ¥ (Displayed if volume ID exists.)
DO YOU WANT TO FORMAT DISKETTE (¥/N)? ¥

{The INIT command may now be used to
set up the VID of the diskette, as
desired.)

4-102




SNAPSHOT




4.2.22 Snapshot Utility (SNAPSHOT) SNAPSHOT

The SNAPSHOT utility will copy the contents of an EXORterm 155 screen co a file
or device. It is useful in saving transient information displayed on the screen
which cannot be conveniently directed to a file or device by a more direct
method.

SHNAPSHOT Comnand Syntax

SNAPSHOT [<temminal to copy>] [,<file/device for output>]
where:

teminal to copy Is the optional device name of the terminal on
which the information to be copied is displayed.
1f this field is not specified, the default value
will be the terminal from which SNAPSHOT was
invoked.

file/device for output Is the optional name of the device or file to which
the screen contents should be copied. The default
value for this field is #PR, the common device name
for the first system printer. If a file name is
specified, an extension of .SA and the current
default volume, user number, and catalog are
applied where the file name is not fully qualified.
The file thus created is an indexed sequential file
of the type used by the editor, simplifying
subsequent modification.

When SNAPSHOT is invoked on a temminal, several thousand characters are sent
from the terminal to the computer. This causes a delay of several seconds, even
over a 9600-baud port. When transmission speeds of less than 9600 baud are
used, more time is reguired to copy screen contents.

It is important to note that the SNAPSHOT utility will work only with EXORterm
155 terminals. Attempts to use it with other terminal types will cause the
receiving terminal to lock up and display garbage until its RETURN key is
pressed.

SNAPSHOT Utility Examples

Example 1

=SNAPSHOT The contents of the screen on the tevminal from
which SNAPSHOT was invoked are copied to device
#PR.

Example 2

=SNAPSHOT $CN12,SHOWSBUG The contents of the screen of terminal #CN12 are
cnpied to file SHOWSBUG.SA under the user's default
volume, user number, and catalog.

4-103




SYSANAL




4.2.23 System Analysis Utility (SYSANAL) SYSANAL

The SYSANAL utility provides a means of looking at RMSG68K system tables and at
any part of memory while VERSAdos is running. SYSANAL is an interactive
cperating system debugging tocl. Output can be directed to the user's temminal
or can be redirected to a printer.

SYSANAL Command Syntax

SYSABNAL [<output field>]
where:
output field Is the name of the device where output will be listed. If mo
output field is given, the default is # (user's interactive
terminal) .
SYSENAL respordds by displaying a prampt for entry of subcommands:

SYSh:>

Quit Subcammand Syntax (QUIT)

SYSh:>QIUIT]
where:!

QUIT or Q Is the subcommand for temminating the SYSANAL utility and
returning control to VERSAdos.

hddress Dump Subcommand Syntax (AD)

SYSA:>AD <addressl>[,<offset>»] <addressd>

where:

AD Is the subcommasnd to dump a block of memory in hex format.
addressl Is the starting address of the blcck of memory to be dumped.
offget - Is a hex value that will be added to <addressl> to determine

the starting address of the block of memory dumped.
address2 Is the ending address of the block of memory dumped.

4-104



Channel Control Block Subcommand Syntax (CCBS)

SYSA:>CICBS]
where:

oCBS or C Is the subcommand to dump the contents of all Channel Control
Blocks knowm to the system.

Free Memory Subcommand Syntax (FREE)

SYSA:>F[REE] <partition #>

where:
FREE or F Is the subcommand used to list the free memory list for any
memory partition.
partition # Is the memory partition rumber.

Global Segment Table Subcommand Syntax (GST)

SYSA:>GIST]
where:

GST oxr G Is the subcommand to list all entries in the Global Segment
Table. Bach entry describes the size and attributes of a
globally or locally shareable segment.

See Appendiz E, paragraph E.5, of the Real-Time Multitasking

Software User's Mamal, MGBRFMS68K, for a description of the
Global Segment Table.

Map Subcommand Syntax (MAP)
SYSA:>M[AP]

where:

MAP or M Is the subcommend for listing the limits and size of each
memory pertition and the free mewmory list for partition 0.

See Appendiz E, paragraph E.9, of the Real-Time Multitasking

Software User's Mamual for a description of the Memory Msp
and Pree Memory List.

4-105




SYSRNAL

Memory Dump Subcommard Syntax (MD) ‘
SYSA:>MD <address> [,<offset>] <# bytes>
wheres
“D Is the subcommand used to dump a block of memory in hex
format.
address Is the starting address of the block of memcry to he dumped.
offset Is 2 hex value that will be added to <address> to determine
the starting address of the block of memory dumped.
# bytes Is the mumber (expressed in hex) of bytes to be dumped.

Offset Subcommand Syntax (OFF)

SYSA:>0FF <address>

wheres
OFF Is the subcommand used to set a default memory addvess offset
for use by the MD and AD subcommands.
address Is a hex value to be used as a réoq address offset. .

Qutput Subcommand Syntax (QUT)

S¥SA:>T <device>

wheres:
ouT Is the subcommand used to select an output device.
davice Is the output device. § selects the user’s terminal; #PRn

selects a printer.

Periodic Activation Table Subcommand Syntax (PAT)

SYSA>P[AT]
where:
BAT or P is the subcommand used to list all of the tasks with entries
in the Periodic BActivation Teble as a result of having
delayed or regquested periodic activation.
See Appendix E, paragraph E.10, of the Real-Time Multitasking ‘

Softwere User'sz Mamwal for a description of the information
found in the Periodic Activation table.

4-106



Feady Subcommand Syntax (READY)

SYSA:>RI[EADY]
where:
READY or R

Is the subcommand used to list selected information about
each task currently on the ‘Ready® list (these tasks are
waiting to run). The information is taken from the Task
Control Block associated with each task.

See Appendix E, paragraph E.2, of the Real-Time Multitasking
Software User's Mamual for a description of a Task Control
Blc 7“‘

System TCB Subcommand Syntax (STCB)

SYSA:>S[TCB]
where:

STICB ox S

Is the subcommand for listing selected information about each
system task currently known to the system. The information
listed is taken from the Tesk Control Block associated with
each task.

See Appendix E, paragraph E.2, of the Real-Time Multitasking
Software User's Mamual for a description of a Task Control
Block.

System Parameters Subcommand (SYSP)

S¥SA:>SY[SP]
where:

S¥sP or SY

Is the subcommand for listing the system parameters.
See Appendix B, paragraph E.l, of the Real-Time Multitasking

Software User's Mamual for a description of system
parameters.

4-107



SYSANAL

Tables Subcommand Syntax (TREL)

SYSA>T[ABL]
where:
TABL ox T

" Is the subcowmand for listing all of the tables recognized by

SYSANAL. The TABL subcommand is the eguivalent of entering
the following subcommands:

S¥sp
TREP
MAP
s
RERDY

Task Subcommand Syntax (TASEK)

SYSA:>TASK <task name>[ <{session>]

where:

Is the subcommand used to reguest a detailed list of
information about one task.

The information listed is found in the Task Control Block and
Task Segment Table for the given task.

See Appendix E, paragraphs E.2 and E.3, of the Real-Tire
Multitasking Software User's Mamual for descriptions of the
Task Control Block and Task Segment tables.

Task name can be entered as a 4-character ASCII value or as
an 8-character hex value preceded by S.

Session can be entered as a 4-character ASCII value or as an
8-character hex wvalue preceded by $. If no session is
entered, the first task found with the given task name will
be listed.

4-108



SYSANAL
Task Contreol Block Subcommand Syntax (TCB)
?yﬁ ‘ SYSA:>TCB
where:
B Is the subcommand for listing selected information about each

task currently known to the system. The information listed
is taken from the Task Control Block associated with each
task.

See Appendix E, paragraph E.2, of the Real-Time Multitasking

Software User‘s Mamual for a description of a Task Control
Block.

! Trace Subcommand Syntax (TRAC)

SYSAD>TR[AC]
where:

:

: TRAC or TR Is the subcommand used to list the System Trace Table

entries. The entries are listed in chronological order from
the oldest to the most recent. The time that each entry was
built and the difference in time between entries is also
listed.

See Appendix E, paragraph E.7, of the Real-Time Multitasking
Software User’s Mamual for a description of Trace entries.

Trap Subcommand Syntax (TRAP)

SYSE >TRAP

Is the subcommand for listing the Trap Instruction Assignment
Table and the Trap Instruction Owner table. These tables
indicate which Trap instructions are currently owned by
server tasks.

See Appendix E, paragraph E.l, of the Real-Time Multitasking

Software User's Mamual for a description of the TIAT and TIOT
tables.

4-109




SYSANRL

User Semaphore Table Subcommand Syntax (UST) .
SYSR:>US[T]

where:
UST or US gb i*::e subcammand to list all entries in the User Semaphore

See Appendix E, paragraph E.6, of the Real-Time Multitasking
Software User's Mamual for a description of the User
Semaphore Table.

User TCP Subcommand Syntax (UTCB)

SYSE:>UITCB]
where:

UICB oxr U Is the subcommand for listing selected information about each
user task currently known to the system. The informstion
listed is taken from the Task Control Block associated with
each task.

See Appendiz E, paragraph E.2, of the Real-Time Multitasking

Software User's Mamual for a description of a Task Control ‘
Block.

4110



SYSAMAL - Summary of Subcommands

Program Control Commands

QUT Lbevice> Send output to <deviced>.

QUIT Terminate program.

Memory Dump Commards

OFF <address> Set default memory address offset to <address>.

MD <addressl>[,<offset>] <# bytes>
Dump <§ bytes)> starting at <addressl> + <offseb>.

% AD <addressl>|[,<ocffset>] <address
2 Dump memory <addressl> to <address>.

List System Table Commands

CCBS Channel Control Blocks.

FREE n- Free Memory List for memory partition n.
: GST Global Segment Table.

MAP Memory Map.

PAT Periodic Activation Table.

READY Task Ready List.

STCB System Tasks.

SYsp System Parameters.

TABL All system tables.

TASK <name>| <gession»] Detailed information about one task.

B all tasks.

TRAC Svstem Trace Table.
TREP Trap Imstruction Tables.
ust User Semaphore Table.
Urcs all user tasks.




TRANSFER




4.2.24 Transfer ASCII File Utility (TRANSFER) TRANSFER

The ASCII file transfer utility is provided so that files comprised of printable
ASCII characters in the range $20-$7E, such as source programs or S-record files
(Appendixz A), can be transported between a host computer gystem and one of the
VERSAdos systems (download) or in the other direction (upload). The
compunication link can be a direct connection between serial ports (RS-232) on
the two systems, or voice grade phone lines using a type 103 modem. Data can be
transferred at 300 baud via the modem/phone line link, or at rates up to 9600
baud using a direct connection.

When transferring a file via modem, connection is made through a port on a
Multi-Channel Communication Module (MOOM). For direct connection file transfer,
an MCCM port or a port on the DEbug Module or the second port on the W02 can be
used.

The ASCII file transfer utility differs somewhat from the usual VERSAdos utility
in that three separate programs are involved. Two of these are Pascal programs
installed on the remote host system, and the third is an assembly language
program instailed on the VERSAdos system. The two host programs, DLOAD and
ULOAD, run on the host in coordination with the TRANSFER program running on the
VERSkEdos system. TRANSFER uses the standard VERSAdos file handling and

input/output services.

Source code for the three programs is supplied so that medifications can be made
to accommdate any differences in Pascal implementation. Most of the
modifications will be reguired in the DLOAD and ULOAD programs. As a
familiarization aid, two example sets of these Pascal programs are also
supplied. One will run on the VERSAdos system. The other has been run on an
IBM 370 after compilation by the Pascal/VS program.

On VERSAdos versions prior to 2.0, a patch must be made to the TRANSFER.LO
module for ULOMD to work properly. The patch and associated change to the
source file is presented below:

TRANSFER.LO TRANSFER.SA
ddress, 0ld value, New value Line mwber, Old contents, New contents
SIABE S$53DA 55388 1295 SB.L $1,A2 SUB.L #1,20

The utility operates in three modes:

a. The download mode, during which the file is actually transferred from the
host system to the VERSEdos system.

b. The upload mode, during which the file is actually transferred from the
VERSRJos system to the host system.

c. The transparent mode, in which the EXORterm or other terminal functions
as a simple terminal and appears to be communicating directly with the
host system.

The general operating sequence is to enter the transparent mode; initiate upload

or download, following completion of which the transparent mode is automatically
reentered; then initiate another file tramsfer or terminate.

4112




TRANSFER

Use of the ASCII file transfer utility to communicate data between two computer
systems -- either by direct connection between serial ports or via phone lines
using modems -- places certain constraints on the process which must be
accommodatad. Namely, both systems must be configured for the same baud rate,
type of modem, and character makeup.

VERSAdos, as shipped, contains default values which set up the serial ports on
the DFbug and MCOM Modules as follows: 9600 baud, one start bit, eight data
bits, no parity bit, and one stop bit. If the host computer supports this
protocol, file transfer is possible by direct connection through port 2 on the
DEbug Module or an MUCM port. However, the user should note that the bit time
is about one millisecond; therefore, the processcr should be dedicated solely to
the data transfer else overrun is likely. Successful data transfer at this rate
in a multiuser environment is possible through an MCOM port, but may not succeed
when port 2 on the DEbug Module is used.

To use the ASCII file transfer utility for data transfer via modem using an MCCM
port, for example, the following considerations should be observed prior to
invoking the utility.

First, the VERSAdos system hardware must be configured.
a. Select an MCCM port for the file transfer.

b. On the terminal/modem configuration header corresponding to the selected
port, ensure that the configuring jumpers are installed in the B-C
position (MOD}. This causes the VERSAdos system to appear like a
terminal to the modem. Refer to the following chart for correspondences
between MCOM header, 1/0 panel port, and VERSAdos nomenclature. Note
that the I/0 port designators differ from the VERSAdos designateors. In
the System Generation Facility User's Manual, M68BKSYSGEN, these ports are
called terminals.

MOCM PORT DESIGNATOR VERSAdos
HERDER I/0 PANEL VERSEdos MNEMONIC
K8 1 0 CN10
K7 2 1 CNl1l
K10 3 2 CN12
K 4 3 CN13

The mnemonics (device names) given above are for the first (or only) MCM.

Next, a new operating system must be generated which reflects the new hardware
configuration and supports a baud rate of 300 and a type 103 modem. The
configuration can be changed by modifying parameters in the SYSGEN command file.
Refer to the System Generation Facility User's Manual.

A special step must be taken when using ASCII file transfer between two VMC
systems with the connection made between local ports. When operating in this
mode, upload will not function properly unless the type-ahead feature on the
local (home) port is deconfigured. To deconfigure the type-ahead feature, it is
necessary to set bit 7 of the attributes word in the associated device control
block (DCB) to 1. The standard value for the attributes word is $0100. This
must be changed to $0180 to deconfigure type-ahead. The device control block is
contained in module IOC.SA which is assembled at SYSGEN time..

4~113




TRANSFER

After the user has configured the VERSAdos system hardware and operating system,
he should ensure that the host system supports the just-established data
communications protocol. As mentioned, because the Pascal modules are
implementation-dependent, it is highly likely that some slight adjustment for
the user's enviromment will be necessary. The best approach is to acquire an
understanding of each program so that the part that needs to be changed can be
isolated and the precise change determined. To aid you in this endeavor, source
listings are extensively annotated.

The following example typifies use of the utility to download an ASCII file via
modem from a host IBM 370 system running under TSO to a VERSAdos system. The
source file is HOST.DATA; the destination file name is HOME.SA. HNote that
syntax appropriate to the system executing the command must be observed when a
cammand is entered. For clarity, user input is underlined, while utility
displays are not. The dialog begins after the user has initiated a session on
the VERSAdos system.

Step 1. =TRANSFER #CN20;HD
ASCII FILE TRANSFER -~ VERSION 1.00
*%TRANSPARENT MODE -~ TYPE CTRL~A TO TERMINATE TRANSFER PROGRAM

Step 2. The user now establishes a phone line link with the host and initiates
a session on that system.

Step 3. EX DLOAD ‘HOST.DATA' (sent from VERSRdos system to host and executed
there)
ENTER RECEIVING FILE NAME OR 'Q' TO RESUME TRANSPARENT MODE

Step 4. HOME.SA
DOWNLOAD INITIATED
KEY IN 'T° TO TERMINATE TRANSFER AND RESUME TRANSPARENT MODE
‘D' TO TOGGLE RECORD DISPLAY
(records are displayed as they are downloaded)
DOWNLOAD COMPLETED 000312 RECORDS TRANSEFERRED
#RPRANSPARENT MODE - TYPE CTRL~-A TO TERMINATE TRANSFER PROGRAM

4-114




TRANSFER

Step 5. (CIRL-A)

The command line in Step 1 invokes the assembly language program on the VERSAdos
system and specifies the port through which data is to be sent. Options H and D
select half duplex communication and reguest display of records as they are
downloaded, respectively. :

Step 3 shows a command line sent to TSO, specifying a command on the TSO CLIST
that will invoke the Pascal download program. The name of the source file is
also specified. TSO syntax is used on this command line.

Entering the name of the receiving file in Step 4 initiates the download. The
user is given the options of viewing the file records as they are received and
of stopping the transfer. (At present, the process cannot be restarted at the
stopping point but must begin again from Step 1.)

An upload file transfer is quite similar to the above download example except
that upload messages are provided and the command line sent to TSO (Step 3)
would be:

EX ULOAD 'HOST.DATA®
ENTER SENDING FILE NAME OR 'Q' TO RESUME TRANSPARENT MODE

This command specifies the command on the TSO CLIST that will invoke the upload
program.

The capability of transferring ASCII files in either direction between a
VERSAdos system and a remote system was developed using a data communications
link between an EXORmacs and a system comprised of an IBM 3033 (or the AMDAHL
equivalent) running under the MVS operating system equipped with the TSO option.

4~-115




TRANSFER

4.2.24.1 ASCII File Transfer Command Format. Commands specified to the file
transfer utility are interpreted by the VERSAdos operating system and, if the
host is a not an applicable VERSAdos system, by the operating system of the
host. Those commands specified to VERSAdos must be expressed in the syntax
required for the command, file descriptor, device name, and option fields within
the standard command line. Commands specified to a non-VERSAdos system are
expressed in the format of that system.

TRANSFER Command Syntax

TRANSFER <device name> [;<options>]
where:

device name Is the VERSAdos mnemonic for the port through which file transfer
is to be made.

NOTE

The as~-shipped default value for the device name field is CN20.
The user can install his own default by altering the value of
the DLEFPORT eguate in the source file TRANSFER.SA, then re-
assembling and relinking the file.

options may be one or more of the following options:

B ~ Remove trailing blanks from record prior to transmission.
The default is B; -B may be specified when trailing blanks
are desired.

C - Transmit checksums with records. On checksum verification
failure, make three additional transmission attempts. The
default value (3) can be changed using the form C=n in
place of the character C alone. This form must be
followed by a comma if an additional coption is specified.
The default is C; -C may be used when checksums are not to
be transmitted with records.

D - Display records on home terminal when transmitted. This
option must be specified when it is desired. The default
is -D, which causes transmitted records not to be
displayed.

H - Set half duplex communication for transparent mode
(assumes no characters are echoed from host). H causes
data tc be transferred a line at a time, with a carriage
return signifying the end of each line. -H causes data to
be transmitted a character at a time. The default is H.

4-116




TRANSFER

4.2.24.2 Transfer Protocel. The following diagram depicts the data transfer
. protocol used during the download process.

preamble <-
acknowledge -

—

1 S ——

< frame < ° °

K_§)1<><:54: <
acknowledge ——————mm——>
block <

@ @

frame ﬁ ® s

@ ‘

_block <

acknowledge ————ma—m——>

block <

frame o . (last frame)

|
|
|
|
; .

block <

acknowledge -w——emm—3

4-117




TRANSFER

The following diagram depicts the data transfer protocol used during the upload
process.

HOME HOST
< preamble
> block l
: : frame —-e————3 1
< acknec vledge 1
- > block
: : frame =-————>
-———> block
< acknowledge
; &
» block
(last frame) : : frame ————e——>

< acknowledge

Following are definitions of the terms used in the data transfer protocol
diagrams:

Preamble - The preamble is a string of characters which identify parameters of
the ensuing process. Preamble contents can be modified by altering
constants in the Pascal scurce host programs and recompiling.
Parameters identified in the preamble include:

+ upload or download

. block size expressed as number of characters

. number of blocks per frame

. communication option ‘
. character conversion option

4-118



TRANSFER

Block - A block is a single burst of transmitted characters. It consists
of packed, compressed records from the source file plus other
control information.

Frame - A frame is a transmitted seguence of from one to nine blocks
containing a checksum calculated over the group. An
acknowledgement is transmitted back to the sender after each frame
is received.

Preamble Format

An actual file transfer is initiated by the invcked Pascal program sending a
preamble record that alerts the TRANSFER program running on the VERSAdos system
so that special requirements of the host/home commnication link can be
acconmodated. ‘This first record or preamble is comprised of the following
fields:

CHARRCTER
POSITION FIELD DESCRIPTION
i-8 Preamble The character string “PREBMBLE" occupies this field.
9 Process Type The character “U® or "D identifies the upload or
download process, respectively.
1o Commnication Identifies the nature of the ensuing communications.
Option As released, the options characters are "A" (host is
VERS2dos system), and "B* (IBM 370 is host).
11 Character The character "A"™ (VERSEJos system is host) or "B"
Conversion (IEM is host) avoids or selects a special con-
Option version, respectively.

12-14 Block Length Three BASCII decimal digits (blanks represent
non-significant preceding digits) identify the
number of characters per block.

15 Nurber of One ASCII decimal digit identifies the number of

Blocks blocks per frame.

BA11 characters in the preamble are encoded as ASCII characters. Fields 10 and
11 require additional discussion.

The communication option, if A, informs the TRANSFER program that the host is a
VERSAdos system. If option B is sent, TRANSFER recognizes that the host is an
IBM 370 system. The protocol differs between the two. For example, if the
host is an IBM, an acknowledgement is not sent immediately after receipt of data
as it is if the host is a VERSAEdos system, but only after a $11 (DCl) control
character is received indicating that the host port is ready to receive.

4-119




The character conversion option, if an A, informs TRANSFER that, since the host
is a VERSAdos system, no conversion is needed. A 'B' character, on the other
hand, causes TRANSFER to accammodate the different I/0 required by the IBM host.

In particular, lowercase characters are automatically converted to uppercase
before calculation of the checksum for a frame prior to the data being uploaded.
Conversion is not reguired for downloading, but two IBM 370 idiosyncrasies are
accommodated. The first results from the fact that the IBM Pascal runtime
package automatically forces an end of line when it recognizes the $5E (°) code.
This restriction is accommodated by having the host download program edit the
source file data and change all $5E's to $7E's (7) before sending the record.
The second arises from the fact that the IBM Pascal runtime package interprets
the '7' character (ASCII code $7E) differently if it is passed as a character
constant than if it is read from a file. This restriction is accommodated in
the lockup tables in both the upload and download Pascal programs on the host by
using the $7E code in Loth the $7E and $5F positions.

It can be seen from the above that a certain customizing of the Pascal upload
and download -- and perhaps the TRANSFER -- programs may be necessary before
successful ASCII file transfer is achieved on a particular home/host system
configuration.

Frame Format

A frame is comprised of one to nine blocks and can be considered to be a single
character string formed of packed, compressed ASCII records. Although a frame
is of a fixed length, records are variable length and may cross frame
boundaries, thus conserving space. Due to encoding restrictions, an ASCII
record is limited to a maximum of 255 bytes.

B frame is comprised of two control fields and a data stream, as follows:

CHARACTER
POSITION FIELD DESCRIPTION

1-2 Checksum The checksum, in ASCII hex, calculated cver the
data field only. The wildcard value 00 ($3030) is
always accepted. Checksum value is {sum mod 255) +
1, where sum is the sum of the ASCII codes fram
byte position 3 to the end of the frame.

3 Last Frame The character "A" indicates not last frame.
Character Y2Z" identifies the last frame in an
upload or download transmission.

4N Data Data encoded as raw data and compression packets

(explained on following page) and contained in
records of variable length, where N is the number
of characters in a frame as computed from the
preamble.

4-120



TRANSFER

The data stream is a contiguous succession of records, each of a length defined
by a preceding length field and containing raw data and/or compression packets.
Records are encoded using the following format:

COMPRESSION
SENTINEL

COMPRESSED
CHARACTER

CHARACTER
COUNT

Preceding LENGTH
Record *1 FIELD Next
Record

RAW DATA
= BY¥TE

Record Encoding Diagram

The length field is encoded from a 2-byte value, thereby limiting the maxirum
record length to FF or 255 characters, not including the record length field.

A record body is made up from raw data and compression packets in any order
required. It is unlikely that a record would comprise a single compression
packet or raw data only, but this is permitted subject to a maximum length of
255 characters.

The compression packet is a device to increase transmission efficiency in the
presence of data containing characters that are repeated four or more times in
succession., Packets are encoded using the leading sentinel $7C (the symbol

"g") , followed by the character whose repetitions are being compressed, followed

by the compression factor or the mmber of times that character is to be
repeated in the destination file. The compression factor value is conveyed by a
single character from the alphanumeric sequence 4,5,...9,A,B,...%4, in which A
has the value 10, B has the value 11, etc., through Z which has the value 35.

4-121




TRANSFER

For example, the string QQQQQQQ would be encoded [Q7 ($7C5137 in ASCII hex). A
further example of the use of a compression packet would be the encoding of the
short record: ABCCCCDEF. fThis would be represented as:

raw data —~— _—T3w data
08ABIC4DEF
N [
record length field \ compression packet

From the above, it can be concluded that any data not encoded in a compression
packet is represented as raw data - i.e., as one ASCII character per byte of
source file data.

Acknowledge Format

In the downlioad mode, the home system sends a two-character acknowledgement to
the host system following successful reception of the preamble and each frame.
If the B option was specified (trailing blanks suppression) when TRANSFER was
invoked, NB is sent. If the B option was not selected, NY is sent.

Similarly, RB or R¥ sent on detection of a frame checksum mismatch; TB or ¥
sent to terminate the download program following the last frame in a
transmission.

In the upload mode, the host system sends a one-character acknowledgement.
Following successful reception of the preamble and each frame, an N is sent. On
detection of a checksum mismatch, an R (for retransmit) is sent and a T for
acknowledge and terminate after the last frame.

In the upload mode only, detection of a T in the first character position causes
unconditional termination of the process.

4.2.24.3 File Transfer Reliability. Transfer of ASCII files is affected by
some factors over which the utility has no control. Because the interval
required to perform I/0 differs on a VERSAdos system versus that required by an
IBM system, and because, in a multiuser environment, processor reliability is
not precisely predictable, a format of one block per frame is recommended. This
allows the interleaved acknowledgements to synchronize block transmission, thus
assuring reliable data transfer.

In applications where experimentation for the purpose of maximizing the rate of
data transfer is desired, the number of blocks per frame can be adjusted. This
is done by modifying the constant secticn of the download Pascal program running
on the host and recompiling the program. Since baud rate and concurrent user
activity on the VERSAdos system can also affect I/0 synchronization, the user
may wish to experiment with these factors also.

4~-122




TRANSFER

As mentioned earlier, data can be transferred at higher rates by direct
connection. In one instance on a single-user system, a rate of 9600 baud was
achieved using direct connection through port 2 on an EXORmacs debug module.

When a new VERSARJos operating system is generated for data transfer by direct
connection, standard RS-232 protocel is observed at the serial port. However,
when VERSAdos is generated for data transfer via modem, the clear-to-send line
is not asserted by the new code because this could cause loss of carrier.

4.2.24.4 Transfer Programs and Files. The following programs and files are
supplied with the current release of the ASCII File Transfer utility:

(1) TRANSFER.SA
(2) ULOAD.SA
(3) DLOAD.SA
{(4) TRANSFER.LO
(5) TRANSFER.LF

source for VERSAdos system program
source for VERSAdos system host upload program

source for VERSAdos system host download program
load module from TRANSFER.SA
chain file to link TRANSFER

(6) TSO.ULOAD.SA -~  source for IBM host upload program
(7) TSO.DLOAD.SA - source for IBM host download program
(8) TSO.DLOAD.CF -  example CLIST for IBM (host) download
(9) TSO.ULOAD.CF -~ example CLIST for IBM (host) upload

Note on Communication between Two EXORmacs Systems

When establishing communication between two VERSAdos systems, a problem arises
when trying to log onto the host system in transparent mode. Entering a ‘break’
from the home system will simply terminate the transfer program. The break is
not sent to the host system to initiate a logon sequence. At the present tine,
there is no mechanism to send a break out from either a DEbug or MCM serial

port.

To overcome this problem, a utility called BREAK can be used. To use the BREAK
utility, perform the following steps:

a. Bring the TRANSFER utility up on the home system but do not attempt to
initiate a logon sequence from the home system.

b. On the host system, log on as user 0 and enter the following command:
=BREAK #CNgx

Where #ChNxx is the device name for the port on the host system which is
comnected to the home system. The effect of this utility is to queue an
attention event to $EET indicating that a break has occurred on the
indicated port. The entry exit task will then initiate a logon
sequence to that port. The logon message should appear at the home
terminal where the transfer utility has been invoked. The normal logon
dialog can then be followed.

4~123




The MOM firmware and the local terminal driver will always wait for a
carriage return te terminate an input reguest from the TRANSFER utility
on the home system. For this reason, only messages that are sent from
the host system that are terminated with a carriage return will appear
on the home terminal. The user at the home terminal will thus see the
first line of the logon message but the line "ENTER USER NO. =" will
not appear since it is not terminated with a carriage return. The user
nunber should be entered even though the second line of the logon
message did not appear. The same can be said for the security word and
password if they are active. Note also the system prompt (=) will never
appear at the home terminal since it too is not terminated by a
carriage return.

Because all incoming characters are ignored between VERSAdos I/0
requests, characters at the beginning of a line may be dropped. For
example, if only a carriage return/line feed is sent, both may be missed
and TRANSFER may appear to hang.

TRANSFER does not support a “true" transparent mode of operation. The
transparent mode of the TRANSFER utility simply provides a mechanism for
entering the upload or download mode. It is not a general-purpose mode
and does not allow other types of dialog between home and host system.

4-124




R s Je s eon



R S

4.2.25 Upload S-Records Utility (UPLOADS) UPLOADS

UPLOADS is a VERSAdos utility which is used to migrate S-records (see
Appendix A) from some externmal source to a VERSAdos system. The S-records must
be received through a port of a Multi-Channel Comminications Module (MC(M) which
is connected to the source system via a direct RS-232 hardware configuration.

NOTE

Modems cannot be used because direct connection of the
CTS line is required to provide the source system with
the information needed to prevent buffer overrun.

The VERSAdos file which will contain the received S-records is specified as an
operand when the UPLOADS command is entered. UPLOADS either "allocates" this
output file if it is new, or "positions™ the file following the first existing
89 record, for apperding, if the file already exists.

NOTE

There cannot be embedded S9 trailer records within an
S-record file. UPLOARDS prevents this by using a
positioning technique and changing any previously
existing S8/S% records to nulls. Also, if several
S-record files are sent to UPLOADS, any S8 or S9
records received will be ignored unless at the end
of the file (the processing of the QUIT directive
will transfer a pending S8 or S9 reccrd to the file).

UPLOADS Command Syntax

UPLOADS <output field>

where <output field> may be any file name (default extension is MY}.

UPLOADS Subcommands

STATUS This subcommand allows the remote user to see if there were any
errors while transmitting the S-records. Only the last error will
be displayed.

QUIT The QUIT subcommand is entered to tenminate the UPLOADS program
and cause the newly created S-record file to be saved.




UPLOADS Command Example

UPLOADS

Using an EXORmacs Development System, allocate a new file and receive S-records
fran a Remote Hardware Development Station (RHDS).

NOTE

In the following example, information that was entered
by the user is underlined. All other information can
be assumed to be responses to user commands (in this
case, MACSbug or VERSAdos).

After connecting port 2 of the RHDS to the MCM of the EXORmacs, apply power and
RESET to start the following interactive sequence:

TERMINAL DISPLAY

BRIEF EXPLANATION

PC=000000 SR=2700=.S7..... US=B238B238 SS=0000055C
DO=FFFFFFFF D1=FFFFFFFF D2=FFFFFFFF D3=FFFFFFFF
D4=FFFFFEFF DS=FFFFFFFF DG6=FFFFFFFF D7=FFFFFFFF
AQ=FFFFFFFF Al=FFFFFFFF A2=FFFFFFFF A3=FFFFFFFF
A4=FFFFFFFF AS=FFFFFFFF AG6=FFFFFFFF A7=0000055C

MACSbug 3.x*

MACSbug 3.x* ™
*TRANSPARENT* EXIT=$0l= CTRL A

<BREAK key>

VERSAdos VERSION: mm.nn, mm/dd/yy
ENTER USER NO.=FIX:<{user number>

=UPLOADS FILEQL

“RHDS" MACSbug prompt.

Enter transparent mode. (Hold CTRL key
down and press A.) Transparent mode
allows the terminal (connected to port 1
of the RHDS) to be virtually connected to
whatever is connected to port 2 of the
RHDS (which is connected via a direct
line to an MOM on an EXORmacs system
operating under VERSAdos).

The next step is to initiate a user
session under VERSAdos to enable the
EXORmacs system to receive the S-records
and have them saved on disk.

Begin VERSAdos logon procedure.

Enter default drive and user number.

When the prompt (=) appears, the UPLOADS
program can be invoked, and the name of
the file it will use to store any
S-records that are received from this
peint on can be entered.

4-126



UPLOAD

UPLOADS
UPLOADS will respond with:
"S"  RECORDS

Version x.y
Copyrighted 1981 by MOTOROLA, INC.

volume=FIX
catlg=
f£ile=FILEOL
ext=MX
UFLOADS Allocating new file

Ready for "S" records;...

MACSbug 3.n*DU2 700 7FC

MACSbug 3.n*TM

By now, the UPLOADS program has verified
the name of the output file which was
entered, found that it did not exist
previously, and allocated such a file.
Also, as the last line indicates, the
UPLOADS program is ready to receive
S-records (via the MCCM communication
link).

The next step is to "DISCONNECT" the
“virtual®  terminal connection  with
VERSAdos, and communicate with MACShug in
order to construct and transmit the
S-records. This is done by exiting the
transparent mode.

(Hold CTRL key down and press A.) The
link through port 2 to EXORmacs (via the
MCCM) has now become one-way. Data can
be transmitted out of port 2, but
VERSAdos cannot send messages to port 2.
(This is why any error status message
must be saved and sent only when the link
can receive again.)

MACSbug has been instructed to create
S-records from memory, starting at
location $700, and transmit them through
port 2 until the ending address of S$7FC
has been reached.

Having transmitted the memory images
desired, the UPLOADS session can be
terminated within VERSAdos and it can be
verified that there were no errors.

It is now necessary to reconnect the
terminal (on port 1) with the MOM to
EXORmacs (on port 2).

4-127




UPLOADS

QUIT The QUIT directive is entered to check
for any errors, save the new file, and
terminate the UPLOADS program. The
program should respond with the
following:

volume=FIX
catlg=
file=FILEQL
ext=MX

*STATUS* No error since start of program

Upload of S-Records complete.

=0FF The program is now complete but the
VERSAdos session is still active. Typing
the OFF command frees the port on
EXORmacs for another user. (BYE is also
acceptable.)

The file FIX:<user number>..FILEQl.MX has

been released and is now ready for any
future regquirements.

4-128




ERROR
MESSAGE

GENERATOR

(EMFGEN)




4.2.26 Error Message File Generator Program (EMFGEN) EMFGEN

The Error Message File Generator program (EMFGEN) reads sequential records from
ERRORMSG.SA (the input file) and generates indexed sequential records in
ERRORMSG.SY (the output file). Upon execution, the current ERRORMSG.SY file is
deleted and a new one created. This program enables the user to add his own
error messages and/or reformat existing messages. New messages should be added
at the end of the ERRORMSG.SA file, rather than at the beginning. A description
of the ERRORMSG.SA file can be found in the VERSAdos Messages Reference Manual,

Appendix E.

This program uses the error message handler program for any errors it might
encounter, and the error message handler program requires the ERRORMSG.SY file
to execute properly. Since the error message file generator program is bulding
a new ERRORMSG.SY file, the error message handler program is not able to access
it. Consequently, it is recommended that the ERRORMSG.SA file be copied to
another user number to generate the new ERRORMSG.SY file. When this function
has been successfully completed, the new ERRORMSG.SY file can then be copied
back to user 0.

When EMFGEN is initiated, the input file ERRORMSG.SA must be available under
default user volume and user number.

4.2.26.1 EMFGEN Command Syntax. EMFGEN is called from VERSAdos as follows:

EMFGEN

4.2.26.2 Error Message File Format for ERRORMSG.SA. The ERRORMSG.SA format can
have two kinds of records: comment and data input. Comment records give the
user the flexibility of documenting pertinent information, while data input
records are used as input to create keyed records for the output file,
ERRORMSG.SY .

General Record Formats

a. Comment record
COLUMN REMARKS

01 Contains the identifier (*) which will denote this as a
comment record.

02-80 Contains user comments.
b. Data input record
COLUMN REMARKS
01-08 The hex notation of these eight bytes will be converted

to four binary bytes and used as the key value of the
error messadge in the output file.

09 Contains a delimiter which must be a space character.
10-80 Contains the error message text and substitution
sentinels.

4-129




EMEPGEN

Data Input Record Key Value Fommat

The basic format of the key value field is the same as the format of register DO
following a trap call. The subfield definition is as follows:

C.

BITS

00-15
16-26
27-30
31

CONTENT

Error status code

Directive number

Trap nunber

Reserved for internal error classification

Error status code - This is a unigue hex value identifying the type of

error.

Directive number - This is a unique number within a trap call that
identifies for the trap logic the appropriate path of execution to be
followed.

Trap number - This number identifies the type of trap to exascute. A trap
number of zerc (0) is used for non-trap-related messages to be displayed
by the error message handler program.

Substitution Sentinel Format

The basic substitution sentinel can have one of the three following formats:

a. \Soo

b. \Sooxx

c. \Syyyy

where:

\ Is a flag identifying this as a substitution sentinel.

s Is a substitution sentinel code.

00 Is a decimal offset to be added to a base register address
supplied to the error message handler program. The information at
the offset will be processed according to the substitution code
and inserted into the error message.

X% Is a length value identifying the number of characters to move.
This is used only with substitution sentinel code C.

Yyyy Is a key value that is required only for substitution sentinel

code K.

Except for sentinel I and K, the decimal offset (00) plus the number of bytes
involved processing the sentinel cannot exceed 48.

4-130




EMFGEN

Substitution Sentinel Codes

The following substitution sentinel codes and their interpretations are used to
construct error messages that are displayed by the error message handler

program.

de

Substitution sentinel codes \Boo, \Woo, \Loo

For each of these codes, the offset is added to the base address supplied
to the error message handler program and respectively one, two, or four
bytes of data specified by the resultant address are converted to decimal
ASCII.

Substitution sentinel code \Xoo, \Yoo, \Zoo

For each of these codes, the offset is added to the base address supplied
to the error message handler program and respectively one, two, or four
bytes of data specified by the resultant address are converted to hex
ABCII.

Substitution sentinel code \Cooxx

The offset is added to the base address supplied to the error message
handler program, and xx bytes of data from this address are transferred
to the error nessage.

Substitution sentinel code \Kyyyy

The record containing the hex key value yyyy will be retrieved from the
FRRORMSG.SY file. This part of the error message will be preceded by a
carriage return, a line feed, and have all embedded sentinels expanded
before continuing the interpretation of the message. For example, if the
key value yyyy contained the message “CMD=\T00 OPT=\T02 LU=\B05", then
the embedded sentinels would be interpreted and this part of the message
would be preceded by a carriage return and line feed prior to being
inserted into the error message being built. Nested K sentinels are
invalid.

Substitution sentinel code \Too

This sentinel requires that a code be translated into its ASCII prose
equivalent. To accomplish this, a dynamic key value will be built by the
error message handler program, the corresponding record will be read from
ERRORMSG.SY, and the ASCII prose equivalent will be inserted into the
error message being built. The format for the dynamic key value is
"ttooccec!.

where: tt Is the original trap number plus the bit setting
required to indicate a trap four (bit number 29).
00 is the original offset in this substitution sentinel.
cece This value is determined by using the contents of the

address determined by adding the offset to the base
address supplied to the error message handler program.

4-131




EMIFGEN

£. Substitution sentinel \Aoco

Part of the required information that is passed to the error message
handler program is register A0. If the user wishes to have the address
specified by this register converted into hex ASCII and displayed in the
error message being built, then this sentinel should be used. The offset
used with this sentinel must be zero (00).

g. Substitution sentinal \Ioo

The user may pass to the error message handler program the address of a
message plug pool which contains multiple strings of text separated by
the hex delimiter "FF". This sentinel will result in the deblocked text
being inserted into the basic error message, thus providing the caller
with a way to include variable message content from a source external to
the parameter blocked that is passed to the error message handler
program. Plugs within the plug pool are numbered beginning with one, so
"\I02" will access the text following the first hex delimiter "FF". The
plug pool always starts with a text string, never with the delimiter
lIFF!I.

h. Substitution sentinel \Doo

The standard error message displayed by the error message handler will
include the task name, session number, binary key value requested,
caller, and a message delimiter. If the user wishes to eliminate this
part of the error message, he should use this sentinel. It is
recommended that this sentinel be the last one in the error message. The
offset used with this sentinel must be zerc (00).

Key Values Used with Substitution Sentinel Code \Kyyyy

The following hex key values are examples of sentinel codes that can be used:

KEY VALUE MESSAGE

00000000 \I0L

0000000C QMD=\T00 OPT=\T02 LU=\BO5

0000000D Q4D=\T00 OPT=\T02 LU=\B0S5 DEVICE=\C0604
0000000E MD=\T00 0PT=\T02 LU=\B05 PSN=\Z08 DEVICE=\C0604
0000000F FILE=\C0604 :\W10 .\C1208 .\C2008 .\C2802
00000010 CMD=\T00 OPT=\T02 LU=\B05 PSN=\Z36

4-132




E
|
|
|
:
|
|
i

EMEFGEN

Error Message Key Values

The following will define the key values currently associated with a given error
message set. Non-trap-related error message key values from hex 00008000
through 0000FFFF are reserved for customer use.

UTILITIES 00000000 -~ 000002FF
SESSION MANAGEMENT 00000300 - 000004FF
SYMBUG 00000500 - OO00Q06FF
PASCAL RUN TIME 00001000 - OO002FFF

Record Examples

The following will illustrate some of the types of error message records that
could exist.

* % % %

Any record with an asterisk (*) in column one is a comment record.

]

0000010C Invalid entry

08010006 Duplicate segment name (GTSEG)
10000084 Invalid data buffer \K000C BUFF=\Z12
18000017 Nonexistent file name \K000C \KOOOF
%

&

* MESSAGE KEY VALUE TYPE ERROR MESSAGE
00000100 Non-trap-related
08010006 Trap 1 related
10000084 Trap 2 related (10S)

18000017 Trap 3 related (FHS)

4.2.26.3 EMFGEN Output. Upon completion, the program outputs the new
ERRORMSG.SY file under default user volume and user number, along with the
following message:

X000 X NNNN RECORDS NOW IN ERRORMSG.SY FILE'
where: XX0OX X Represents the program revision code.
NNINN Represents the number of records in the file.

All errors encountered by this program will be processed via the error message
handler program. The potential errors that can occur are as follows:

a. An assign error via the file handling system on ERRORMSG.SA

b. An assign error via the file handling system on ERRORMSG.SY

¢. A read error via the I/0 system on ERRORMSG.SA

4. A write error via the I/0 system on ERRORMSG.SY

€. Key value XI0OOXX will not be added to file ** input error

f. Key value XX0OXXX error message added but truncated to 84 bytes

4-133



4.2,27 Error Message Handler

The error message handler program is a system server task that will provide
standardized error message displays in response to exception conditions, thus
relieving the user task from the responsibility of maintaining his own error
message list.

The program will retrieve the key value of the message to be displayed from the
ERRORMSG.SY file, which must reside on the system volume, expanding any embedded
sentinels, and then present the error message to the user-specified output
device. The expansion of sentinels C, I, and T will replace nondisplayable
characters, except null, with a period (.).

4.2.27.1 Program Requirements. The following must be true at program input:

a. The error message file ERRORMSG.SY on system volume, user number 0.
b. Register A0 equals the address of the error message parameter block.

c. Register DO equals the directive 2, to initiate the error message handler
program.

Program output consists of the display of an error message.
4.2.27.2 Error Message Parameter Block Format. The error message parameter

block is the mechanism by which the user and the error message handler program
commanicate. Its format is as follows:

FIELD BYTE SIZE FILELD DESCRIPTION

Four Contains the binary key value of the error message to be
displayed.

Four address of the parameter block for trap-related calls.

One Available for future use.

One Logical unit number, assigned to the user, of the device
or file to which the output error message is
transmitted.

Two Available for future use.

Four Contains the start address of the user message plug pool

if one exists.

Four Contains the end address of the user message plug pool
if one exists.

4-134




Binary Key Value

In the case of trap-related calls, the contents of register DO, as it is
returned to the user task, must be stored in this field since it will contain
the binary key value of the error message to be displayed. For non-trap-related
error messages, this field needs to be set to the appropriate binary key value
for the desired error messade.

Address of Parameter Block for Trap-Related Calls

1f the error message to be displayed is the result of a trap call, this field
contains the address of the trap parameter block associated with the call.
Pertinent information from this parameter block can then be extracted and used
to build the resultant error message. If the error message is non-trap-related,
this field should be set to zero.

Error Message Plug Pocl

The error message plug pool contains multiple strings of text separated by the
hex delimiter 'FF'. The user may specify not only which plug text he would like
inserted into the error message, but also where he would want it inserted. This
flexibility allows the user to include variable message content and can be
accomplished via the substitution sentinel code \Ioo. The maximum plug pool
length for a given plug pool is 96 bytes.

4.2.,27.3 Program Initiation. The error message handler program is initiated
via a trap 4, directive 2 system service request.

Example for a trap-related call

LEA I0SBLK,A0 Al0=address of I0S parameter block

TRAP #2 Initiate the I0S trap call

BEQ CONTINUE Junp if the trap was successful

MOVEM.L DO/AO,EMHPBLK Initialize the error message handler parameter

block with the binary key value and the address of
the I10S parameter block

LEA EMHPBLK , A0 A0=address of error message handler parameter
block

MOVE.L  #2,D0 DO=directive 2

TRAP #4 Initiate call to error message handler program

4-135




MOVE.L  $EMHBKV,EMHPBLK Initialize the error message handler parameter
block with the binary key value

LEA EMHPBLK, AQ Al=address of error message handler parameter block

MOVE.L.  $2,D0 DO=directive 2

TRAP #4 Initiate call to error message handler program

4.2.27.4 Error Message Format. All error messages displayed from the error
message handler program will display a standard error message format which will
consist of the following, unless requested otherwise:

Task name

Session number

The binary key value requested

The type of call -- user, 108, FHS, service reguest, loader
Message delimiter "##*"

User message

4.,2.27.5 Errors. Errors internal to the error message handler program will
have the same basic format as all other error messages. The user message part
of the total error message will be standard in all cases with “EMH ERRCR #n" as
the message, where n represents the internal error number. The message “EMH
ERROR #n" is followed by a hex value which is the contents of DO. This value
normally represents the error code that the message handler encountered when
trying to ocutput the requestor's original message.

The value of n and its interpretation are as follows:

ERROR NUMBER MEANING
0 Available for future use.
1 BError encountered changing the user's output logical unit
number .
2 Error encountered trying to assign ERRORMSG.SY. This will

occur if an exclusive read or write assignment exists on the
system volume.

3 Error encountered trying to read the user's binary key value.

4 Error encountered trying to read the binary key value of
sentinel code \K.

5 aAvailable for future use.

4-136



10
11

12

13

Error encountered attempting to write to the user's ovtput
device.

Error due to nested K sentinels.

Error message being built expanded such that the source
creating the message was destroyed.

Error encountered receiving logical unit number from user.
Error encountered sending logical unit number back to userx.

Frror encountered trying to move the caller's A0 parameter
block or the caller‘s plug pool.

An error has occurred because the plug pcol size specified by
the caller exceeds the maximumn allowed size of 96. The DO
value displayed after the error message handler number will
contain the plug pool size requested.

an error has occurred because upon examination of the plug
pool, an insufficient number of plug pool delimiters was
discovered. The DO value displayed after the error message
handler mumber will contain the number of delimiters
originally requested.

If a user is executing multiple tasks from a given terminal, it is potentially
possible that an error message will not be displayed. This will occur when one
task has the output device in a busy state, reguesting input, and another task
would like to output an error messaye to that device.

4-137



HARD DISK
- SYSTEM
UTILITIES




4.3 HARD DISK SYSTEM UTILITIES

Beginning with revision 3.0, VERSAdos supports several utilities which are
supplied for use with hard-disk based systems only. These are the Dispatch
utility (DISPATCH), the Account utility (ACCT), the Validate Password utility
(VALID), the Invalidate Password utility (NOVALID), the SESSIONS utility, and
the Spooling utilities (SPL and SPOOL). DISPATCH is used in batch mode and is
described in Chapter 3. ACCT, VALID, and NOVALID are part of the security
subsession and are described in Chapter 5. Detailed explanations of SPL, SPOOL,
and SESSIONS are provided in the following paragraphs.

4.3.1 Spocler Task Utility (SPL)

The purpose of a spooling capability is to increase the overall throughput of a
given system by increasing the amount of time the processor and terminals are
available during I/0 with the slower peripherals, usually the printer(s). The
general approach reguires that imput be read from and output be written to
auxiliary storage concurrently with job execution. The form of the input/output
should be suitable for later processing or output operations.

VERSAdos provides a spooling function by means of a system task which is
installed by the system administrator {user 0) when the function is desired. To
provide control, this spooler task -- named SPL -- utilizes a spooler queue file
of the name and extension SPIQUEUE.SQ. SPLQUEUE.SQ contains a description of
the name, size, location, and queue position of each spooler file. The latter
is a file created by the spooler task on a volume designated the “spooler™
volume, whose function is to contain all spooler files.

Once SPL is resident, interface with any peripherals designated spooling devices
is under control of the task. Interface with the spooler queue file is made via
the utility SPOOL, which permits the user to view the queue file and effect
certain changes in his queue file status and requirements as described below.
The SPOOL utility also allows the user to request output of nou-spooler files on
designated spooling devices. (Non-spooler files are those for which output, at
creation, was not directed to a spooling device and for which, consequently, the
spooling task did not create a copy on the spooler volume and a corresponding
entry in the spooler queue file.) The spooling function can be removed from the
system by the administrator, when required.

The operating system VERSAdos has been tailored so that all printers are
designated as Centronics-compatible spooling devices. To remove the spooling
device status from a printer, or to add a printer and designate it as a spooling
device, the user's operating system file -- VERSADOS.SY -- must be regenerated
using the SYSGEN process. This permits the appropriate descriptions to be
installed in the Device Control Blocks. Refer to the section describing SYSGEN
for details.

4138




Installing the Spooling Utility SPL

The task SPL must be installed by the system administrator (user 0) at the time
the system is brought up. At that time, the administrator Aesignates the volume
to hold the spooler queue file and all spooler files subsequently created by the
task.

SPL Command Syntax

SPL <spooler volume named>
vhere:

spooler volume name Is the volume to use for spooler files.

Examples:
=SPL SYS0 Designate volume SYSO as the spooling volume.
=SPL SYS0: Designate volume SYSO as the spooling volume.

—

If the spooling loader is called again after spooling is active, the message
“ER. DUPLICATE TASK" will appear.

Once installed, the spooling function remains in force until discontinued by the
system administrator or the system is rebooted. To remove the function in mid-
session, the session control command TERM is used in conjunction with the
spooling task name and a special session meaber as follows:

TERM .SPL &1

If the disk device containing the spooler queue file is to be taken offline, SPL
must be terminated and restarted as follovs:

ACTION EFFECT

TERM .SPL &1 Terminate spooler task utility to
close spooler quev -~ file.

Take device offline. Remove current spooling device.

Put new device online Instali new spooling device.

and ready device.

SPL <spooler volume name> Install spooler utility.

4-139



SPOOL




i
i
|
i
i
%
|
|
|
L
]
|
|

4.3.2 Spooling Utility (SPOOL) SPOOL

in general, user interface with the spooling function merely requires requesting
that the output of some process be made to a designated spooling device with the
spooling task handling the user's requirements from that point on. To
accommodate the normal exigencies of computer use, a utility named SPOOL is
provided which offers a repertcire of nine comnands that allow limited
manipulation of the spooling function with respect to the user's own jobs.
Provided capabilities include starting, stopping, continuing, cancelling, adding
and viewing jobs, changing the forms ID of a spooler device, and changing the
nuvber of desired copies. Details of the syntax and use of these comwands are
provided below.

Spooling Utility Commands

The following table 1lists the SPOOL utility commands and gives a brief
description of the general functions they provide. Full descriptions are
provided in the following pages.

COMMAND ACTION

CANCEL Cancel a spooler job

CONTINUE Continue a spooler job

QOPIES Change number of copies of a job output
FORMS Change forms ID for a spooler device

HELP List the commands and command syntax

PRINT 244 a non-spooler file to the spooler queue
QUEUE View the spooler queue file

QUIT Terminate SPOOL (interactive mode only)
START Output a spooler file now

CGeneral Command Notation

Any command may be entered by using the first four characters of the command.
Also, PRINT may be entered as "P", FORMS as "F", START as "S", and QUEUE as "Q".
The delimiter preceding <argument> may be either a blank space or a comma. The
interactive mode prompt is "»>". In interactive mode, the user is prompted for a
new command until "QUIT" is =ntered or SPOOL terminates because of an error.
Both upper- and lowercase letters are valid.

Specifying SPOOL and one of the utility's nine commands and its arguments, if
any, on the command line causes execution of the command and return to VERSAdos
control. Specifying SPOOL alone causes entry into the utility's interactive
mode, which is indicated by display of a greater than symbol (>) at screen left.
Any SPOOL utility command can then be used.

SPOOL Cammand Syntax

=SPO0L [<commard> [, <argument>]]

or
=5PO0L  [<command> [<{space><argurent>]]
where:
command Is any SPOOL utility command.
space or , Is a required delimiter if an argument follows.
argument Is a value on which the specified command cperates.

4-140



HELP

T I




SPOOL:

4.3.2.1 Help Command Syntax (HELP). The HELP command is used to view the
’ available commands and their syntax:

HELP

HELP Command Example

=SPOOL
>HELP {this outputs the list of commands)
> (enter any command here)

4.3.2.2 Queve Command Syntax (QUEUE). The QUEUE command is used to display
spooler queue file information.

QIUEU([E]] [<argument>]
where:
Q, QUEU, or QUEUE Is the command.
argument May be one of the following:
. user number

. "s" for session
. device name

; . o llFll or "Fomn

Information in the queue file for each job includes:

a. A spooler device designation such as PRl that shows to which device the
job file will be sent for output.

b. A 4-character forms ID - either the default ID "STND" if the job file is
a spooler file or one of the user's choice (via the PRINT command) if a
non-spocler file.

c. A job ID consisting of the user's user number plus four digits added by
the spooling task to provide unique identification for each user job.

d. The volume ID, catalog name, file name and extension of the file to be
output by that job.

e. The name of the utility which generated the job file.
f. The current status of that job.
Any user may invoke the QUEUE command at any time. If a spooler device has

never had an assignment made to it, the device name will not be in the
. form-device listing.

4-141




SPOOL

The following table lists the various forms the QUEUE command argument may take .
and the corresponding function provided.

SPECIFY ACTION

NO ARGUMENT List all spooler queue file entries.

USER NUMBER List all entries for that user.

S List all entries for the current session.
DEVICE NBME List all entries for the specified device.

FORM List the spooler device names, the current forms

ID setting and current status.

QUEUE Command Examples

NON-INTERACTIVE INTERACTIVE
MODE MODE ACTION
=SPOOL

=SPOOL Q >QUEUE List the entire queue. ’
=SPOOL QUEUE 313 >QUEUE 313 List all entries for user #313.
iﬁ =5POOL QUEUE S >QUEUE S List all entries for the current session.
=SPOOL QUEUE #PR >0 #PR List all entries for specified device.

=5POOL QUEUE F >Q FORM List all spooler device names and their

current forms ID and current status.

>QUIT (or any other command)

Example of listing the entire queue

DEV FORM JOBID VOL CATALOG FILENAME TASK JOPY STATUS

PR STMD 3130100 SPOL @1234567.89 RASM 1  VAIT-FORMS
PRL ABCD 3130413 VOL3  TESTFILE TEST3.SA SPOL 2  OUTPUT NOW
PR2 STHD 440003 SPOL @ABCDEFG.34 LINK 1  WAIT-CONT

4-142




The following table explains the messages displayed in the Status column.

STATUS MEANING

READY Ready to output.

ACTIVE File not closed, being built.

OUTPUT NOW File being output to a spooler device.

WAIT-CONT File cannot be output until a CONTINUE is issued.

Forms ID for the device matches the entry forms ID.

WAIT-FORMS File cannot be output until the forms ID is changed
to match the entry forms ID and a CONTINUE is issced.

10 ERR DO=zz File was being output but encountered an I/0 error.
The file cannot be output until the reason for the error
has been corrected and a CONTINUE is issued.

CANCEL The file is currently being output and a CANCEL was issued
for it. The file will be canceled as soon as the next file

record is output.

The following type of display results when a list of device names and their
forms ID's are reguested.

DEVICE FORMS ID STATUS (OK = OK TO OUTPUT; WAIT = WAITING FOR CONTINUE)

PR 1234 OK
PRL ABCD 0K
PR2 STND WALT

4-143






SPOOL

4.3.2.3 Canocel Command Syntax (CANC). The CANCEL command is used to cancel
spooler output and delete the spooler file.

CANCIEL] [<argument>]
wheres
CANC or CANCEL Is the command.

argument Is an optional value which may be a job ID or a file name.
A non-spooler file name may be specified if it exists in
the spooler queve file. Non-spooler file name default
values for volume, cataleg, and user number are the
standard default values.

The CANCEL command may be specified at any time. Both the spooler file and the
corresponding queue file entry are deleted. Only the queue file entry is
deleted for a non-spooler file. User 0 may cancel any job; otherwise, only the
file owner may cancel a job. User O must specify either a file name or a job
1ID. Failure to do so will result in an error message. Present versions of
VERSAdos do not allow use of the CANCEL subcommand to cancel all spooler jobs.
Future versions will allow user 0 to either cancel all spooler jobs or cutput a

message.

The following table lists the CANCEL command argument forms and the general
functions provided.

SPECIFY ACTION
KO ARGUMENT Cancel all jobs for the logged on user number
FILENAME Cancel the specified file

JOBID Cancel the specified spooler job

CANCEL Command Examples

NOW-INTERACTIVE MODE INTERACTIVE MODE ACTION
=SPOOL
=SPOOL CANCEL >CRNCEL

OK TO CANCEL ALL YOUR FILES (Y/N)? OK 7O CANCEL ALL YOUR FILES (¥/N)?

Cancel all user jobs
if a ¥ response is

given.

=SPOOL CANCEL 3130049 SCANCEL 3130049 Cancel this job.

=SP00L CANCEL @ABCDEFG.34 >CANCEL @ABCDEFG.34 Cancel this spooler
file.

=8PO0L CANC VOL3:313..QUTFILE.SA >CANC OUTFILE.SA Cancel this non-
gpooler file.

>QUIT (or any other command)
4-144






When no argument is specified, the spooler prompts with the message:
OK TO CANCEL ALL YOUR FILES (Y/N)?
and waits for entry of Y (yes) or N (no). If Y is entered, all files for the

logged-on user number are removed from the queue; if N, the spool prompt (>) is
returned to.

4.3.2.4 Continue Command Syntax (CONT). The CONTINUE command is used to
restart spooler output to a spooler device. .

CONT[INUE] <device name>
where:
CONT or CONTINUE Is the command.
device name 1s the name of a spooler device.
CONTINUE is used to start output to the device after the forms ID associated
with the device is changed, or to restart output after an I/0 error is

encountered on the specified device. CONTINUE is ignored if the device is busy.
Any user may issue the CONTINUE command.

CONTINUE Command Examples

NON-INTERACTIVE MODE  INTERACTIVE MCDE ACTION

=SPO0L
=SPOOL CONTINUE #PR >CONT $PR Start output on this device.
=8POOL CONT #PR1 >CONT #PRL Start output on this device.

>QUIT (or any other command)

4-145







SPOQL

4.3.2.5 Forms Command Syntax (FORM). The FORMS command is used to stop spooler
output when the current Jjob is completed, and to change forms ID for the
specified spooler device.

FIORM[S]] <device named,<forms ID>
where:

FORMS, FORM, or ¢ Is the command.

device name 1s the name of a spooler device.

forms ID Is a name formed of four alphanumeric characters.

Execution of the FORMS command stops output to the specified device (the current
job is first completed) and marks that device with the specified forms ID. Then
the spooling task will send only jobs with the matching forms ID to the device
for output. The spooling utility command CONTINUE must be used to start output
to a device following change of that device's forms ID. The forms ID is

similarly changed back to the standard default value by specifying 'STND' in the
forms ID field of the Forms command. Any user can issue the Forms command.

FORMS Command Examples

NOWN- INTERACTIVE MODE INTERACTIVE MODE ACTION

=SPOOL
=SPOOL FORMS $#PR,ABCD >FORMS #PR,ABCD Change the forms ID to "ABCD" for
this device; suspend output until a
CuNTinue command is issued.

=SPOOL CONT #PR SCONT #PR Output spooler files to this device
which have & forms ID of “ABCD".

=SPOOL F §PR,STND >F #PR,STND Change forms ID to "STND" (standard)
and suspend output until a CONTinue
command is issued.

=SPOOL CONT $PR >CONT §PR Output standard forms ID spooler
files.

>QUIT (or any other command)

4-146




PRIN




i
f
:
.
b
!
!,
»
k

4.3.2.6 Print Command Syntax (PRIN). The PRINT command is used to add a
non-spooler file name to the spooler queue file.

PIRIN[T]] <argument>

where:
PRINT, PRIN, or P Is the command.
argument Is specified as follows:

<non-spooler filenamed,<{device name>[,<forms ID>]
[.<# of copies>] :

where:

non-gpooler filename Is the descriptor of a VERSAdos
file. A minimm of the file name
and extension fields is required.
Standard default values are used
for unspecified fields in the

descriptor.
device name Is the name of a spooler device.
forms ID Is a name formed of four alpha-
mumeric characters.
§# of copies iIs a decimal number fram 1
through 255.

The default values for the optional “forms ID" and "§ of copies” fields are
"STND* and 1, respectively. A specified non-spooler file must exist at the time
the PRINT command is issued -- i.e., the file cannot be in the process of being
created through use of the CRT editor or by assembly, etc. Execution of the
PRINT command immediately creates an entry in the speoler queue file for the
specified file. On completion of output, the queue entry {only) is deleted.

PRINT Command Examples
NON-INTERACTIVE MODE INTERACTIVE MODE BCTION

=5PO0L
=SPOOL PRINT TEST.SA,#PR >PRINT TEST.SA,#PR 2dd this non-spooler filename
to the spooler queue file.
Device name=PR, forms ID=STND,
# of copiessl
=SPO0L. PRINT TESTL.Sa, SPRINT TESTL.SA,
§PRL ,ABCD 4 §PR1L ABCD 4 B33 this non-spooler filename
to the spooler queve file.
Device name=PRL, forms ID=
ABCD, § of copies=4
=SPOOL P S¥S:313..TEST2.L8, >P S¥S5:313..TEST2.LS,
$PR, 2 PR, ,2 2dd this non-spooler filename
to the spocler queue file.
§ of copies=2

>QUIT (or any other command)

" 4-147




STAR




SPOOL

4.3.2.7 Start Conmand Syntax {(STAR). The START command starts immediate output
of a job file, regardless of existing spooler task priority.

S[TARI[T]] <argument>
where:

STRRT, STAR, or S Is the command.
argument Is specified in either of two forms:
<job ID>[,<# of copies>]
or

<spooler filename>[,<# of copies>]

where:
job ID is the 5~ to 8-digit number in the
queue file for that job.
§ of copies Is a decimal number from 1 through

255.

gpooler filename Is the name of a spooler file.

START Command Examples

NOM=-INTERACTIVE MODE INTERACTIVE MODE ACTION
=SPO0L
=SPOOL STERT 3130149,.4 >START 3130149,4 Output four copies of this job
next.
=5P00L START 3130035 >START 3130035 OQutput this job next using the
mumber of copies already in the
Queue entry.

=SPOOL START @1234567.89 >START @12345€7.89 Output this spooler file next
using the number of copies
already in the Queuve entry.

SQUIT {or any other command)

4146




L R e

COP!

SPOOLING
UTILITY

SSAGES




,

EPCOL

4.3.2.8 Copies Command Syntax (COPI). ‘The COPIES command syntax is used to
change the desired number of copies.

C[OPI[ES]] <argument>.<# of copies>
where:
COPIES, COPYI, or C 1Is the command.

argument Is the 5- to 8-digit job ID existing in the queue file
for that job, or the name of a spooler file (or
non-spooler file if an entry for the file exists in the

spooler queue filej.
¢ of copies Is a decimal number from 1 through 255.
The COPIES command may be used at any time. User 0 can specify any file name.
Other users can specify only their own files. A minimum of the file name and

extension fields is regquired when specifying a non-spooler file. Standard
default values are used for other fields in the descriptor, if not specified.

COPIES Command Examples

NON-INTERACTIVE MODE INTERACTIVE MODE ACTION

=SPOOL

=SPOOL COPIES 3130010,4 >COPIES 3130049,4 Output four copies of this job.

=SPOOL, COPIES TEST.SA,1 >COPIES TEST.SA,1 Output one copy of this file name.
YQUIT (or any other commard)

4.3.2.9 Spooling Utility Error Messages

Syntax errors found before any command is executed result in a list of the
commands and their basic syntax, followed by the prompt (>) for correct input.
For any other errors, refer to the VERSAdos Messages Reference Mamual.

4-149







4.3.3 Sessions Utility (SESSIONS) SESSIONS

The SESSIONS utility is used to detemmine the current online sessions and the
batch jobs in queue for execution. Information is displayed by device number
(terminal) and sessions number for online sessions and by user number and
session number for batch jobs.

SESSIONS Command Syntax

SESSIONS

SESSIONS Utility Example

=SESSIONS

ONLINE SESSIONS (TERMINAL/SESSION):
iz 0043

CN10 0068

N1l oo6eB

w2l 0040

CN00 0067

CHi3 006D

BATCH JOBS (USER/SESSION) ¢

2iz 007C

4-150




'CHAPTER 5
'SECURITY
 ADMINIS-
'TRATION




CHAPTER 5

SECURITY ADMINISTRATION

5.1 INTRODUCTION

This chapter provides information on the system security capability, as well as
procedures for modifying the security facilities to suit the user's purposes.
The security package can be excluded from or included in the system at SYSGEN
time.

5.2 VERSRkdos SECURITY ADMINISTRATION

Four levels of system and user security are provided for multiuser hard-disk
M68000 family VERSAdos systems. (Security can be established for single-user
systems by modifying the SYSGEN command file.) VERSAdos security is attained
using a security level flag, a system security word residing in the system
memory space, and a user password file on disk. Interfacing with these are
three system control commands which allow the administrator and users to
establish and observe the desired system and personal security. Two system
utilities provide further interface between administrator and password file to
permit control of system access by user nuwber. The system security level is
established --usually at the time the system is initially brought up -- by the
administrator (user 0). Personal security is established by the users for
themselves.

The four security levels are discriminated according to the state of eight bits
representing a combination of user 0 or not and session 1 or not established in
the security level flag partly by the administrator and partly by the boot load
file. According to the level, a user will be granted access to the system at
logon only if he matches the system security word, his password, both, or if no
match is reguired. The levels are:

Level 0 - No security. hny user mumber is given logon access in all
sessions.

Level 1 - An administratoz-specified system security word exists. To log
on, each user must match the system security woxd on regquest.

Level 2 - A password file exists which contains a list of user numbers
validated by the administrator and a user-specified password (or
not) corresponding to each valid user number. If a password
exists for a valid user, a match is reguested at logon. If no
pasgword exists, no match is needed and, therefore, is not
reguested.

Level 3 - Both a system security word and a password file exist. The logon
requirements of both level 1 and level 2 must be met by a user.
The diagram in Figure 5-1 shows how the security level flag is set to reflect
the four levels of security.

Sl



> S— ~— USER = 0 >|< USER # 0 ——————om >

| B | S8 | B | S8 | BW | S8 | W | S§ |

SESSION 1 | # 1 ] SESSION 1 | # 1
LEVEL PW/SW PAIRS REQUIRED MATCH
0 0 0 None
1 0 1 System word
2 1l 0 Password
3 1 1 Both

FIGURE 5-1. VERSAdos Security Level Flag

5.2.1 The Initial Use of VERSAdos Security

The bootload file, VERSADOS.SY, as supplied, writes all zeros into the system
security level flag when the system is booted. Therefore, level 0 security
exists before session 1 is initiated. For the system to come up in another
level requires that the bootload file be changed using the PATCH utility, since
no provision is made in the security program for such a change. (Paragraph 5.3
provides instructions for making this change.)

When the administrator initially establishes level 1 security through use of the
SECURE command, he must supply the word that all users will subseguently be
required to match for access to the system. This system security word, or
S-word, is established in system memory by means of the SWORD command, aud
remains in force until the security level is changed to 0 or 2 or the S-word is
changed through execution of another SWORD command.

When the administrator initially establishes level 2 security, he must execute a
VALID command (paragraph 5.2.5) to create a password file on the default system
volume which must then and subsequently be available to the security program.
The VALID command uses the list of user mumbers supplied by the administrator to
build an indexed sequential file in which each user number is the key to a
corresponding password record. The password record created for each user number
specified on a VALID command line is set to zero (mulled) so that (1) no
password match is required for a user's initial access to the system, and (2)
the administrator can remove the match password requirement for a user who has
forgotten his password.

Subsequent t¢ the administrator's validation of a user's number, the user may,
if he chooses, install his personal password in the password file through use of
the Password (PASS) command (paragraph 5.2.4). A match will then be requested
when that user nuwber is supplied at the initiation of subsequent sessions until
the password is set to zero or security level 0 or 1 is placed in force.

The initial establishment of level 3 security by the administrator requires that

both a system security word (S-word) is supplied and a password file is created,
as described above.

5-2




SECURE




e R

5.2.2 Secure System Control Command (SECURE) SECURE

The SECURE command is for use by the system administrator (user 0) to specify a
desired level of system security for subsequent sessions. An appropriate level
for the administrator himself and an appropriate level for all other users are
communicated to the SBCURE command., Upon execution, the state of the system
security flag is changed to correspond to the prescribed conditions. This
correspondence is shown in the security level flag diagram shown earlier. Note
that the SECURE command can only affect the flag bits for sessions other than
session 1. The state of the other bits is set during bootload, as previously
mentioned. This means that only the running system is altered by the SECURE
command. The bootload file is not affected.

SECURE Command Syntax

SECURE

The following dialog is initiated with the SECURE command:

LEVELS ARE O/NONE, 1/SWORD, 2/PWORD, 3/BOTH
USER = 02 (The administrator specifies a security level for himself)
USER NOT 0: (The administrator specifies a security level for ail other

users)
=

The specified security levels are echoed to the terminal.

If BREAK is entered, the existing level of security is displayed and remains
unchanged. Likewise, if a non-digit or (CR) without a digit is entered, the
existing level is displayed and remains unchanged.

5.2.3 S-Word System Control Command (SWORD) SWORD
The SWORD command is for use by the system administrator (user 0) to change the

system security word in a running system (the bootload file is not affected).
An S-word is comprised of up to eight ASCII characters.

SWORD Command Syntax

SWORD

The following dialog is initiated with the SWORD command:

ENTER NEW SECURITY WORD (The administrator specifies a security word. The
entry is not echoed to the terminal.)

A response of (CR) clears the current S-word, effectively removing the match
Ss-word requirement for all users. Thus, although the system security flag might
reflect level 1 or level 3, the security program on finding a null S-word, does
not request & match when a user logs on. The administrator must subsequently
enter an S-word through use of the SWORD command to restore the match S-word
requirement.

A response of BREAK causes the input to be ignored and the existing security
word to remain unchanged.

5-3






5.2.4 Password System Control Command (PASS) PASS

The PASS command can be used by all users to enter characters into or clear the
password portion of their own password record. A password entry will only be
accepted for a user number subseguent to validation of that user number by the
administrator, using the VALID utility.

The PASS command is used in two circumstances: 1) a mull password exists, or 2}
an actual password exists. In the first case, the security program on finding a
mll password does not request a match and immediately allows the user to
specify a password. In the second case, the user must match his password before
being allowed to change or clear his password. A password is comprised of from
one to 12 ASCII characters.

PASS Command Syntax

PASS
where:
The following dialeg is initiated with the PASS cuammand:

ENTER EXISTING PASSWORD (This message is displayed only if a non-null
password exists. The user responds with his
password, which is not echoed to the terminal.
Failure to enter the password within the number
of tries specified in SYSGEN results in being

logged off.)

ENTER NEW PASSWORD (The user enters (CR} to clear his password or
specifies a password, which is not echoed ¢o the
terminal. Entry of BREAK causes the existing
password to be retained.)

Should the user desire to eliminate the requirement of matching his password to
leg on, he may respond to the ENTER NEW PASSWORD message with only a carriage
return, which clears his password but does not invalidate his user number.
Should a user not know his password, the administrator must clear the password
through use of the VALID command to remove the match password requirement for
the user. If the user enters BREAK when a new password is reguested, the input
is ignored and the password remains unchanged.







5.2.5 Valid System Utility (VALID) VALID

YALID is a system utility for use by the administrator to control access to the
system by user rumber for security levels 2 and 3. Control is achieved by means
of an indexed sequential file on the default volume that is comprised of
password records to which user mumbers are the keys. Specifying a user number
to the VALID command results in the creation in the file of a record containing
a mull password entry for that user number. The null value can be replaced by
an actuval password supplied to the PASS command by the user. The security
program then requires, for security levels 2 and 3, that the password be matched
before allowing a session to be initiated for that user number. -

password match is not required for null passwords. A user can clear his own
password record using the PASS command (but only after matching his password) .
The administrator can clear the password record for any user number using the
VALID command.

A single user number or a range of user numbers can be specified to the VALID
command. (A user number is any decimal mmber from G through 9999.) Specifying
a non-valid user number creates a record containing the user number and a null
password in the password file. Specifying a valid user number clears the
password portion of the record for that number. Specifying a valid user number
with the V option will create a record if not existing, but will not reset the
password in an existing record. The V option allows the system administrator to
maintain a chain file of VALID (and NOVALID) commands. Without the V option,
the chain file would reset all of the existing passwords.

VALID Commend Syntax

VALID <user no.>[<separator><last user no.>] [;<optiond>]

where:
user no. Is a user mmber.
separator Is a space, comma, or dash separator.

last user no. Is the final number in a range of user numbers.

option Vv, which maintains chain file of VALID and NOVALID commands
{user (¢ onlyj.

VALID Command Example (commands entered in the sequence shown)

=VALID 11 (A record containing a null password is created in the
password file for user number 11.)

=VRLID 1-12 (Records containing null passwords are created in the password
file for user mumbers 1 through 10 and 12. User muber 1l is
ignored.;

=VALID 19 20 (Records containing null passwords are created in the password

rile for user numbers 19 and 20. A space separator may be
used between user numbers in a seguence.)

5-5







5.2.6 HNovalid System Utility (MOVALID) NOVALID

NOVALID is a systea utility for use by the administrator to delete records from
the password file. An entire record is deletad -- both the user number key and
the password. Access to the system is subsequently not granted to the user of
that number when the security level reguires a password match.

A single user mumber or a range of user numbers can be specified to the NOVALID

compand. Invalid numbers within a range of valid numbers are ignored. The
record for user 0 cannmot be deleted through use of the NOVALID command.

NOVALID Command Syntax

NOVALID <user no.>[<{separator><{last user no.>}

where:
user no. Is a user number.
separator Is a space or comma or dash Separator.
last user no. iIs the final mmber in a range of user muwbers.

NOVALID Command Example (commands entered in the sequence shown)

=NOVALID 256 {The record, including user musber key and password, is
deleted from the password file for user number 256.)

=NOVALID 250,260 {(The records, including user number key and password, are
deleted from the password file for user numbers 250
through 255 and 257 through 260, since user number 256
was previcusly deleted}.







5.2.7 Account System Utility (ACCT) ACCT

The Account utility allows the administrator to monitor individual and
collective utilization of the system. The administrator can create a file of
user number records in each of which the utility will automatically maintain the
following data:

a. The time and date of last logoff.
b. A count of the number of sessions.
c. A running total of the hours, minutes, and seconds of system use.

A running total of the aggregate system use is also kept. To ease association
of user with user nuwber and for further classification, provision is made for
user name and department mumber in each user number record.

The facility offered by the Account utility is derived through use of two files.
One, PRIV.ACODUNT.PW, is an indexed sequential file of password records on the
default system volume. This file is established by the administrator to allow
users to control access to their individual files. TWhen the system user
accounting function is desired, the administrator can open the file
PRIV.ACOOUNT.OW to contain the data described above, which the system
subsequently supplies. (The accounting function is available, but is not
externally accessible until the .0W file is opened.)

The PRIV.ACCOUNT.OW file can be opened in either of two ways. When a password
file exists, invoking the ACCT command with the ;U option creates a record for
each valid user number (and deletes existing records for numbers that are no
longer valid). Alternatively, ACCT executed with the ;N option set opens the
file and allows a record to be created for a user mmber on an individual basis.

Record data is entered and updated in several ways. The ACCT ;C option permits
the user name and department fields to be changed in an existing record. The ;N
option allows a new record to be created for a user number. The ;U option, in
addition to creating and deleting records as explained above, causes data in all
fields other than user mumber, department, and name to be updated for existing
records or initiated in records created by execution of the command. A password
file must exist for the ;U option to be functional.

The record for a user mmber can be deleted by specifying the ;X option on the
BCCT command line.

System usage information in the PRIV.ACCOUNT.OW file can be displayed by several
categories. These includes

a. User nuwber for which name, department, time of last logoff, accumulated
usage time, total number of sessions, and date of last reset are

displayed.

b. Department for which each user number is listed giving data as in item
a., plus total department usage time.

¢ All records in the .OW file.

The latter displays data as in item a. for each user rumber plus the total usage
time accumulated by all user numbers in the file. Usage totals are calculated
only at time of reguest. Therefore, consumed system time credited to a user
mmber that is deleted prior to a total usage reguest does not contribute to the
total.

5-7




Another display provided by the ACCT utility is the password corresponding to a
user number. The ;P option provides this function.

If desired, updatable information in an individual user number record can be
reset. The :R option nulls data in the cumulative time, session count and, of
course, data/time of reset fields. The ;Z option provides the same function for
all records in the .OW filie.

The table below summarizes the functions supplied by execution of the ACCT
utility and its 10 options.

ACCT Command Syntax Corresponding Options
{1} ACCT [;<option>] A, U, 2
or
(2) ACCT <user no.>[;<option>] By P, Ry X
or
(3} ACCT <user no.>.<{department>.<name>[;<{option>] C, N
or
(4) ACCT <department> [;<option>} D
vhere:
USer no. is one to four decimal digits.

department is one to eight alphanumeric characters.
name is one to 20 alphanumeric characters.

option is one or more of the following: A, B, C, D, N, P, R, U, X, 2.

Summary of option functions

A - Display all records; show cumulative usage.

B - Display individual record.

C - Change record fleld(s): user no., name, department.

D - Display all records for department; show cumulative usage.
W - Create new record from console.

P - Display user nmumber password.

R - Reset usage in individual record.

U - Update all records from password file.

¥ - Expunge individual record.

Z - Reset usage in all records.

5-8



Example 1 File creation/update

=YRLID 313

=SROVALID 5

=hCCT :U

or

=/CCT S A

=RCCT 313.DEPTX.RON WOOD:N
Example 2 Individual record reset

=/CCT 22:R

Example 3 Complete usage data reset
=ACCT 2

Example 4  Single user display -

=3CCT 212
USER-DEPTeew=-0WNER MBME-wee—w--==-LAST LOG OFF USAGE #S-RESET
0212 DOC KEN 00/00/00 00:00:00 00:00:00 00 801219119
{ (NOT USED SINCE NO DATA RESET
DEPARTMENT USER'S NAME CREATED} ACCUMULATED 12/19/80
RAME/NO. USAGE 11:19
SESSION
COUNT
Example 5 Display all users
=hRCCT :A
USER-DEPT~w==<0WNER NAME-===ewe—-e==IAST LOG CFF USAGE #S-RESET
0000 RD554 SYSTEM ADMINISTRATOR12/22/80 10:50:59 08:47:57 3Y 8012191119
0001 LANG JOHN 12/19/80 16:09:50 00:23:23 02 8012191119
9999 OPERATION OBM RELEASE 000/00/00 00:0:00 00:00:00 00 8012191119

USAGE= 39:30:24

HRS MIN SEC

TOTAL UBAGE FOR ALL USERS




MOD FYING
"THE USER
 SESSION
iwANAGEMENT




Example 6 Display users for a specified department

=RCCT SYST;
USER-DEPT——===OWNER NAME~<=e—~e===LAST LOG OFF: USAGE- #S~-RESET
0004 S¥sT STEVE 12/16/80 16:42:06 00:00:00 00 8012191119
0011 s¥sT RENOLD 12/19/80 11:20:54 ©0:00:00 01 8012191119
7616 SYST ROW 12/22/80 07:42:11 00:00:10 01 8012191119

USAGE= £0:00:10

5.3 MODIFYING THE OPERATION C¥ USER SESSION MANAGEMENT

The value of certain parameters in VERSAdos may be altered by the user to modify
the operation of User Session Management. The parameters are in the QMDLIST
module of the &EET task.

The VERSADOS.SY boot file may be patched using the PATCH utility.

&EET This block of memory holds the identification message which is
printed in response tc a reguest for service BREAK. The
identification message is limited to 80 ASCII characters, and is
terminated by a byte with binary zero value. A return or line
feed is not reguired. .

GEET + $51 Two bytes which hold the mumber of concurrent batch jobs to run.

The mumsber is initialized to 1 in the system as delivered. Note
| that if more than one job is allowed to execute concurrently, a
: job which depends on the completion of another batch job may not
be gueved until the first is completed.

&EET + $53 The security fiag byte which sets the initial logon security
level. If it is desired to reguire password and/or system
security word protection for session 0001, this byte may be

, patched. Once VERSAdos is rumning, the security may be changed,

; using the SECURE command. The binary configuration of the

‘ security flag byte is illustrated in Figure 5-2 (refer also to

paragraph 5.2} .

&EET + $54 Eight bytes which contain the initial system word. The NOTE
following Figure 5-2 also applies with respect to execution of
the SWORD command after start-up.

&EET + $5C This block holds the System Default Volume name (four ASCII
bytes). VERSAdos is delivered with this initialized to “SYS ".
If the volume name is less than four characters, the remainder
of the field must be filled with trailing spaces. When this
field contains the actual System Default Volume name, the user
may enter ":<user mmber>" in response to “ENTER DEFAULT
VOLUME :USER MUMBER".

5-10




&EET + $69

SEET + S6A,6B

SEET + $6C,6D

&EET + $6E,6F

It is not necessary for user = 0 to start SESSION 0001; however,
only user = {§ can initiate the printer spocling task from the
terminal. Upon completion of session 0001 logon (if the SEET+$72
bit = 1), the chain file, 0.PRIV.UPSYSTEM.NW, is initiated as if
logged on under user = 0. The printer spooling task may be
initiated from this chain file as well as security commands,
regardless of the user starting session 0001.

This byte governs the number of attempts to log on or enter
system security word or password before the logon is rejected.

Low limit priority, high limit priority of user/utility tasks
created by the session control task in the online/interactive

As ahove for chain file mode.
As above for the batch mode.

_SYSTEM WORD SESSIONS 2-FFFF
USER 1-9999

PASSWORD SESSIONS 2-FFFF USER
1-9999

SYSTEM WORD SESSION 1 USER 1-9999

PASSWORD SESSION 1 USER 1-9999

SYSTEM WORD SESSIONS 2-FFFF USER 0

PASSWORD SESSIONS 2-FFFF USER 0

SYSTEM WORD SESSION 1 USER 0

PASSWORD SESSION 1 USER 0

level.

FIGURE 5-2. Security Flag Byte

NOTE

This byte is in read only memory, and is used only to initialize the
operating security level. Display of this location during operation
will not subseguently indicate the current security Ilevel after a

CURE command has been executed. Likewise, changing this location
after start-up initialization will not affect the operating security

5-11




Each task created is given a low and high limit priority. The high limit is
constrained to the high limit of the creating task. When a task is started, the
high limit is used as the run priority. Each time the task is dispatched, the
run priority is decremented by one. When the low limit has been reached,
{compute bound task), or each time a call to a server task (trap) is
acknowledged, the run priority is restored to the high limit. The current high
limit for the Session Control Task is $C8 which is, therefore, the absolute
maximum for a user task.

&EET + $71 This byte contains the number of times iuput time-out (no respc ise
to a command input prompt) may occur before the session is
automatically terminated.

&EET + $72 This byte governs system options on a bit-oriented basis as

follows:

BIT FUNCTION

0 Provision for enforcing usage of batch mode for the
utilities ASM, PASCAL, PASCAL2, and LINK; not vyet
implemented.

1 Executes the <chain file PRIV.UPSYSTEM.NW, upon
completion of session 0001 logon.

2~7 Unassigned.

&EET + $74 This long word is the millisecond delay to retry loading a user
task in batch mode when memory is not available. & count of 256
is decremented before aborting the batch job. As supplied, the
delay is 16 seconds (initial value) x 256 = 68 mihutes
(approximately) .

5-12




CHAPTER 6
'LIBRARY OF

EXECUTABLE
'FUNCTIONS
MACROS,
CONSTANTS,
AND DATA
'STRUCTURE
CONFIG-
URATORS




CHAPTER 6

LIBRARY OF EXECUTABLE FUNCTIONS, MACROS, CONSTANTS,
AND DATA STRUCTURE CONEIGURATORS

6.1 INTRODUCTION

Relocatable object file modules and source files which offer common functions of
use to the progrizamer exist under user 0 on the system volume (or the ASM:
diskette for floppy systems). Included are executable functions, macros, systam
constants (eguates), and structures containing data used by the executive to
configure larger structures. Executable functions are contained in modules in
the library file UTILIB.RO. File UTILIB.RO was assembled into section 14 for
linking. The remainder are contained in source files (.SA extension).

Successful use of these functions generally requires that several processor
registers be supplied with particular values, such as pointers, prior to a call.
The entire machine context might also have to be saved and restored on return
from a call. To aid in this endeavor, entry and exit conditions are described
for each routine.

In the following discussion, the terms input field, output field, and options
field refer to the corresponding fields in a command line. Character class
refers to the codes (constants) discussed in paragraph 6.4. Dividing command
line characters into classes aids in minimizing the code required for parsing.
Unless otherwise noted, register values are given in hexadecimal.

6.2 EXBCUTABLE FUNCTIONS

The RO modules in the library file UTILIB.R) offer commonly used functions,
which are listed below. A call to any of these functions can be included in a
source program, provided the required XREF declaration is included and UTILIB.RO
is available to the linkage editor so that its modules can be searched for the
corresponding XDEF and the proper module reserved for the final linking process.

IDENTIFIER FUNCTION

PARSE Resolve command line into fields; check syntax.

EDITFILE Transfer file descriptor or device name to FHS parameter
block.

OPTION Determine option field value(s).

TIMECONV Convert internal time to ASCII representation of hours,

minutes, and seconds.

ODATCONV Convert ordinal date f£rom binary to ASCII.

6-1




IDENTIFIER

DATEOG

FUNCTION

Convert Gregorian date from binary to ASCII.

Convert ordinal date to Gregorian date.

Convert Gregorian date to ordinal date.

Convert binary value to ASCII decimal.

Convert 2-byte binary value to string of ASCII hex digits.

Convert 4~byte binary value to string of ASCII hex digits.

Convert ASCII hex or ASCII decimal string to a binary value.

Convert two ASCII decimal digits to a binary value.

1)

2)

3)

4)

Perform argument substitution from chain file or
console command input.

Convert lowercase characters from command line to
uppercase (disabled when user session management option
K is set).

Insert carriage return in byte appended to end of
command line for this purpose by user (reguired for
SBARG call) and echo command line to output device.
The echo is disabled when user session management
option U is set.

Overwrite with a carriage return the command line
comprised of a single space character.

6-2




6.2.1 PARSE
The purpose of PARSE is the resolution of command line characters into fields

| and validation of field syntax. Error-free execution of this routine is a
i prerequisite for successful calls to the EDITFILE and OPTION functions.

PARSE Command Line Routine

INSTRUCTION IDENTIFIER

CaLL: BSR PARSE

REGISTER CONTENTS

ENTRY D6 Command line length (number of characters)
COMDITIONS: AD Command line starting address

EXIT
CONDITIONS: Do Returned Status:

;
:

MEANING

Call error

No return character

Invalid character

Error in input field

Mull input field

Invalid character in input field
Error in output field

Mull output field

Invalid character in output field
Error in option field

Mull option field

Mumber of commas in output field

&R

MR R
HRRNNEEEN
BRI R R RNRNN

]

Current character
Class code of current character
Remaining character count

SRE

Pointer to current character
Cutput field startirg address
Options field starting address
Last field starting address

LREB

[
s
4
%®
o3

REGISTERS

. O
% %
% %P

%
%

6-3




6.2.2 EDITFILE

The purpose of EDITFILE is to resolve an input or cutput field of a command line
into its respective subfields, validate subfield syntax, and install the
validated field values in the corresponding areas in an FHS parameter block
which the user has previously created. Notification of the effect of EDITFILE
on each subfield is provided by the state of appropriate bits in the long word
returned in data register zarc (DO). A value of 1 in a returned DO bit
signifies that the result described for that bit has occurred.

SUBROUTINE EDITFILE - EDIT DEVICE/FILENAME

INSTRUCTION IDENTIFIER

CALL: BSR EDITFILE
REGISTER CONTENTS

ENTRY AD Pointer to starting address of file descriptor ox
CONDITIONS: device name field.

.13 Bddress of FHS parameter block to receive edit

output.

BXIT
CONDITIONS: Do Returned Status:

BIT(S) MEANING

31 Call error
30 Volume field error
29 User no. field error
28 Catalog field error
27 File name field error
26 Extension field error
25 Write protection key field error
24 Read protection key field error
23 Error occurred during pass 1 pre-edit
22 Volume field found, FHS block modified
21 User no. field found, FHS block modified
20 Catalog field found, FHS block modified
19 File name field found, FHS block modified
18 Extension field found, FHS block modified
17 Write protection key found, FHS block
modified
i6 Fead protec:ion key found, FHS block
modified
15 Hull field(s) found
14 Volume field null
FHS block not wmodified
13 User no. field null
FHS block nct modified
i2 Catalog field null
FHS block not modified
11 File name field null
FHS block not modified
10 Extension field null

FHS block not modified
64




|

9&8

Error code
00 Syntax error
01 Field count error
10 Invelid character
11 MNeming convention error

T wEm Found in field(s)
G n=® Fourd in volume field
5 Wk Fournd in user no. field
(A -2 will be inserted in the FHS
parameter block user number field)
4 wan Found in catalog field
3 R Fourd in file neme field
2 WEn Found in extension field
10= File name
1= Device name ("#" found)
00-= Terminated by field terminator
FIELD TERMINATORS
Space
Carriage Return
Semicolon
Commna
i= Terminated by slash continuation
character
D1 Last character processed
B Address of terminator character + 1
0 1 2 3 4 5 7
D * % % ® %
A * & &
NOTE

ML is not recognized as a valid field temsinator.

65




6.2.3 OPTION

The purpoese of OPTION is to process one option character within a command line
option field. The status return indicates (1) whether the character was
preceded by "-" (used to disable a previously set option), (2) whether the
character was followed by an "=", (3) whether a numeric value (also returned)
followed the "= or an alphsbetic character followed the "=" (file name
assumed), or (4) whether a carriage return was found (end of line). This
subroutine is repeatedly called until the status returned in D0 indicates a
carriage return was found instead of an option.

OPTION PROCESSOR

PARSE Command Line Routine

INSTRUCTION IDENTIFIER

CALL: BSR OPTION
REGISTER CONTENTS
ENTRY
CONDITIONS: A2 2ddress of location containing option field
character to be examined (the current character)
EXIT
CONDITIONS: Do Returned Status:

BIT(S) MEANING

7 Error

6 Carriage return found {end of option
field}

5 Invalid character

4 Bgual sign found

D3 if mmeral follows egual sign, con-
tains binary eguivalent of numeric
value; otherwise, contains ASCII
character value truncated to five
bits

A3 if alphabetical character follows
egual sign, contains starting
address of character

3 Current character following equal sign is
alphabetical

2 Minus sign (not option indicator) found

1 Number conversion error



228

D2

D3

Contains the current option character
Bit 31 will be set if the disable option (~) was
found

Contains the class code of the current character

If bit 4 is reset, then D3 contains the binary
equivalent of the character following the equal
sign

If bit 4 is set, then D3 contains the current
option character value truncated to five bits

Address of next option character to examine

If bit 3 is set, then A3 contains the starting
address of the non-numeric character following the
equal sign

If bit 4 is set, then A3 contains the starting
address if value converted and stored in D3

6-7



6.2.4 Argument Substitution and Associated Functions -~ SBARG

The main benefit Jderived from an argument substitution capability is the
elimination of the need to completely specify a command line when a new
parameter is to be passed or of the need to write an entire chain file when new
arguments are to be processed in the same manner. For this latter reason,
argument substituion finds its greatest use in chain mode processing.

Argument substitution capability is provided by the segment ARG and,
consequently, is similar to that provided by session managemeat under the
VERS2dos operating system.

A call to the SBARG routine will provide these functions:
a. Substitution of specified arguments.
b. Conversion of lowercase to uppercase (provided option K is not set).

c. The appending of a carriage return to end of data in the data buffer (for
compatibility with the Input/Output Service (I0S)j.

d. Echo input from the terminal to the output device (unless option J is
set) .

e. Overwrite with a carriage return the command line comprised of a single
space character.

The following source lines represent a generalized, typical sequence for calling
SBARG. Note that the input buffer must always be one byte larger than that
specified for the I/0 call to accommodate the carriage return appended to end of
data. Also, since SBARG attaches to the segment .ARG, the calling task cannot
have more than thiee segments attached at the time of call. B&About 70 bytes of
stack space are reguired by SBAR: for the saving, use, ard restoration of
registers D1 through D3 and Al through 35.

Calling Seguence

LEA <IOSBLX> A0 BQ = Normal I/0 parameter block address

TRAP $#2 The 1/0 call

BNE <error processing> Refer to the VERSAdos Data Management Services
BSR SBARG and Program Loader User's Mamual , RMS68KIO,

for a description of the standard IOSBLK form.

Entry Conditions (following I/0 call)

A0 = Contains address of 1/0 parameter block

6-8




Exit Conditions

D0 = Zero indicates successful call {or .ARG segment hon-existent)

DO = $00000101 - Substitution caused buffer overflow

D0 = $00000102 ~ Argument not found )

DO = $080400XX - Attach segment error

A0 = Contains I/0 parameter block address; the record length in the
parameter block has been adjusted to reflect the length of the
substituted argument

In the case of a non-exiscent .ARG segment, no argument substitution is
performed, lowercase is not translated to uppercase, and DO is set to zero.

6.2.5 TIMECONV

A call to the routine TIMECOWV will result in the conversion of the binary
representation of a number of milliseconds to the ASCII representation of the

ivalent value expressed in hours, minutes, and seconds. The number of
milliseconds passed to the function can be obtained from an arbitrary source but
often would be obtained from the system clock via execution of the executive
directive GIDTIM.

INSTRUCTION IDENTIFIER

CALL: BSR TIMECONY
REGISTER COWNTENTS
ENTRY
CONDITIONS : Do Nusber of milliseconds to be converted.
EXIT
CONDITIONS: Do MMEH where: MM = minutes
Dl =G5S HH = hours

SS = seconds




6.2.6 Binary-to-ASCIiI Date Conversion - CDATCONV and GDATCONV

A call to one of these functions will provide conversion from the binary
representation of the ordinal date to its ASCII equivalent, or conversion of the
binary representation of the Gregorian date to its ASCII equivalent. Ordinal .
date is the number of days elapsed since January 1 of the current year, and can
be obtained via execution of the executive directive GTDTIM. The Gregorian date
is the current calendar day expressed in a binary representation as shown below.

l
+

CALL: BSR ODATCONV
or BSR GDATCONV
REGISTER CONTENTS
ENTRY
CONDITIONS:
QDATCONV Do Ordinal day number (binary).
GDATCONV DO Gregorian date as YYYYMMDD in which YYYY is a

16-bit binary field, MM an 8-bit binary field, and
DD an 8-bit binary field.

EXIT
COMDITIONS:

Both functions DO DDMM ‘

6-10



6.2.7 Binary-to-Binary Date Conversion - DATEGO and DATEOG

The DATEOG and DATEGO functions provide conversion from the binary
representation of the ordinal date to the Gregorian date, or vice versa,
respectively. Ordinal date is the number of days elapsed since January 1 of the
current year, expressed in binary. Gregorian date is the current calendar day
expressed as shown below. The ordinal date can be obtained by executing the
executive directive GIDTIM. This directive is described in the M68000 Family
Real-Time Multitasking Software User's Mamual.

INSTRUCTION IDENTIFIER

CALL: BSR DATEGO
or BSR DATEQG
REGISTER CONTENTS
ENTRY
CONDITIONS:
DATEGO Do Gregorian date as YYYYMMDD in which YYYY is a

16-bit binary field, MM is an 8-bit binary field,
ard DD is an 8-bit binary field.

DATEOG DO Ordinal day number (binary).
EXIT

CONDITIONS:

DATEGO Do Ordinal day number (binary).
DATEOG D1 Gregorian date (as above).

6-11




6.2.8 Binary-to-ASCII Decimal Conversion - BDCONV

This function provides conversion of binary value in the range 0-9999 to a
decimal value expressed in ASCII representation. Leading zeros are suppressed.

IDENTIFIER

INSTRUCTION
CALL: BSR
REGISTER
ENTRY
CONDITIONS: DO
EXIT
CONDITIONS: DO

BDCONV
CONTENTS

Binary value to converted ASCII decimal eguivalent
of input value.

ASCII decimal eguivalent of input value.

6.2.9 Binary-to-Hexadecimal Conversion - BHWCVT and BHLCVT

These functions perform conversion of a binary value to a hexadecimal value
expressed as an ASCII character string. Leading zeros are suppressed. BHWCVT,
in addition to converting a binary word to four hexadecimal digits, stores the
digits beginning at a specified address. BHLCVT converts a long binary word to
eight hexadecimal digits but has no storage provision.

IDENTIFIER

INSTRUCTION
CALL: BSR
or BSR
REGISTER
ENTRY
QOMDITIONS ¢
BHWCVT DO.W
A0
BHLCVT DO.L
EXIT
COMDITIONS:
BHWCVT DO
0
BHLLVT D2
D3

BHWCVT
BHLCVT

CONTENTS

Binary value to be converted.
Starting address to store converted value.

Binary value to be converted.

Destroyed.
Starting address of converted value plus four.

Four high order bytes of converted value.
Four low order bytes of converted value.

6-12




6.2.10 ASCII Decimal/ASCII Hexadecimal-to-Binary Conversion - ASCVAL

A call to function ASCVAL will convert an ASCII character string representing a
decimal or hexadecimal value to the equivalent binary value. The £function
examines the first character to determine the conversion type wanted. 1If a
dollar sign ($) is encountered, hexadecimal conversion is performed; otherwise,
decimal conversion is performed. An empty character string field passed to this
function in AQ produces a zero binary value. Conversion terminates when the
first invalid character is encountered.

INSTRUCTION IDENTIFIER

CALL: BSR ASCVAL
REGISTER CONTENTS
ENTRY
CONDITIONS: A0 Starting address of ASCII character string to be
converted.
EXIT
CONDITIONS: Dl The character which caused termination.
D2 The class code of the terminating character (refer
to Table 6-2).
D3 The binary result of the conversion.,
A0 The address of the character following the

terminating character.

6.2.11 ASCII Decimal-to-Binary Conversion - CVT2

Conversion of two ASCII decimal digits to the equivalent binary value is
provided by the function CVT2. An empty character string field passed to this
function in A0 produces a zero binary value. Conversion terminates when a
non-decimal digit is encountered.

INSTRUCTION IDENTIFIER

CALL: BSR CvT2
REGISTER CONTENTS
ENTRY
CONDITIONS: AD The address of the most significant ASCII decimal
) digit.
EXIT
CONDITIONS: Do The binary result of the conversion.
) The address of the terminating character.

6-13




6.3 MACROS, SYSTEM CONSTANTS, AND DATA STRUCTURE CONFIGURATORS

Several text files are supplied on the system volume which hold data of possible
use to the application prcgrammer. File contents include system constants, data
structure configurators (blocks of parameters for the fields of data
structures), and macros. The files are all of extension .SA and belong to
user 0. In a floppy-diskette-based system, that diskette with a volume ID of
DIAG contains these files.

The usefuless offered by these files is generally that of convenience. The
degree of usefulness is determined to a large extent by the programmer’s style
-~ whether he expresses offsets numerically or symbolically, whether he prefers
to code an executive call or utilize a macro for that purpose, or whether he has
an excellent memory or must refer often to listings and manuals until the
often-used symbols and values are learned. In the latter regard, listings of
these files can provide quick reference to the mnemonic symbols for offsets from
the various parameter blocks.

6.3.1 Constants and Configurators for Executive Calls

The data structure configurators and the constants used to invcke the various
executive directives are provided in the file SYST:0..EXE.SA (hard) or
DIAG:0..EXE.SA (floppy). Full descriptors of the directives are given in the
M68000 Family Real-Time Multitasking Software User's Manual, M6SKRMSG68K.

6.3.2 Disk Structure Configurators and Constants

The configurators for the Volume ID (VID), the Secondary Directory Block (SDB),
the Primary Directory Block (PDB), and the File Access Block (FAB) disk
structures, plus related consta.its, are provided in the file SYST:0..FME.SA
(hard) or DIAG:0..FME.SA (floppy). Descriptions of these data structures are
given with the REPAIR utility description in this manual.

6.3.3 Macros, Constants, and Configurators for I0S and FHS Calls

Configurators for the data structures by means of which I0S and FHS calls are
executed are provided in the file S¥ST:0..I0E.SA (haxd) or DIAG:0..IQE.SA
(£loppy) .« Also included are error message handler constants for non-trap-
related messages, and five macros for constructing I0S and FHS parameter blocks
and generating the code for 105 and FHS calls. Full information on the
Input/Output and File Handling Services is provided in the VERSAdos I/C and File
Management Services Manual, RMS68KIO.

6.3.4 Constants and Configurators for Task Control Blocks
The configurator and related constants for a task control block are provided in
the file SYST:0..TCB.SA (hard) or DIAG:0..TCB.SA (floppy). The create task

control block executive directive is described in the M68000 Family Real-Time
Multitasking Software User's Mamwal.

6-14




CHARACTER
CLASSIFICA-
TION CODES



6.3.5 Executive Request Macro and Constants for the Requested Directive

A macro for setting up and calling often used Trap #1 routines and the required
constants plus related error codes and messages are provided in the file
SYST:0..TR1.SA (hard) or DIAG:0..TRL.SA (floppy). The requirements for each
executive directive that can be called by executing a Trap #1 instruction are
more fully described in the M68000 Family Real-Time Multitasking Software User's
Manual.

6.3.6 Constants and Configurators for Task Segment Tables

The configurators and related constants for a task segment table are provided in
the file SY¥ST:0..TST.SA (hard) or DIAG:0..TST.SA (floppv). A description of a
task segment table can be found in Appendix E of the M68000 Family Real-Time
Multitasking Software User's Mamual.

6.4 CHARACTER CLASSIFICATION CODES

As mentioned briefly in the introduction to this chapter, a character class code
is a constant serving as a classifying device for reducing the amount of code
required for determining the attributes of characters comprising a VERSAdos
coammand line. Such attributes include, for example, the position of a character
with respect to a preceding delimiter, whether it bounds or lies within a field,
its validity in that field, and so on.

In the VERSAdos operating system, 53 ASCII characters are used in the various
fields of a command line. Manv of them are used in several fields, which
canplicates the task of determining their validityv. To minimize this job, the
characters are divided into eight natural groups. The groups are given eight
different weightings, which further allows characters to be assigned a constant
value determined by summing the weights of each field in which a character
appears. For example, Table 6-1 shows that the character "A"™ appears in (1) the
file descriptor group (wt.=Si0), (2) the alphabetical group (wt.=$8), (3) the
alphanumeric group (wt.=$4), and (4) the hexadecimal digit group (wt.=$2).
Thus, "A" is assigned a constant value of $1E, as shown in the character class
code chart, Table 6-2. Assigning such codes (constant values) to character
groups and subgroups allows greater discrimination of a character than its
expected membership in a valid group such as a command line field. The codes
also allow advantage to be taken of the MC68000 microprocessor’s address
register indirect with index addressing mode. This, essentially, is a double
indexing mode that facilitates scanning the data in a memory buffer relative to
its beginning.

Note that Figure 6-1, the listing of the XDEF CLASCODE DC.B values for the code
constants, maps directly into the familiar ASCII code conversion table shown in
Figure 6-2. The left-most colum of characters in Figure 6-2 corresponds to the
first line of DC.B values. (Only the CR and LF characters from this column are
used in a VERSAdos command line.} Table 6-2 demwonstrates this mapping.

6-15




TABLE 6-1. Command Line Character Classes

WEIGHT/
CLASS MNAME CLASS VMEMBERS SYMBOLS CONSTANT

Field Terminator Carriage Retum, Line Feed, Comma, [CR] [LF] . 80/$80
Semicolor, Space ; [sP)
, Special Flag Pound Sign, Dollar Sign, Equals Sign, # 8§ = 40/$40
| Dash, Asterisk -
% Descriptor Punctuator Colon, Period, Left Parerthesis, T 20/$20
| Right Parenthesis, Siash ) /
i ) File Descriptor Alphabeticals A-Z, Digits 0-9, A-Z 0-9 10/$10
§;_ Asterisk, At Sign, Ampersand T @ &
- Alphabetical Alphabet Chasacters A through Z A-Z 8/$8
: Alphanumeric Alphabeticals A-Z, Digits 0-9 A-Z 4/%4
‘ 0-8
‘ Hexadecimal Digit Alphabeticails A-F, Digits 0-8 A-F 2/%$2
; 0-2 )
Decimal Digit Digits 0-9 0-9 1/$1
} NOTE 1: Value of constant for character that is a member of more than one class
i determined by adding weights of ail classes in which character appears.
‘ Example: Asterisk constant = 40 + 10=§50

NOTE 2: NUL and ali other ASCH character codes not inciuded in one of above

classes are invalid command line codes.

6-16




TABLE 6-2. Character Class Code Chart
) [} o 1 Bit7
1 1 6 0 Bit6
b b3 B2 BY o 1 [ 1 Bit5
NUL, sp )
6 6 0 0O
" 17 10 1
1
6 0 06 1
17 iE 1C
2 ]
6 06 1 0
17 1E ic
P 3
6 0 1 1
40 17 1E 1C
$ 4
6 1t 00
40 17 1E 1C
5
¢t 0 1
i7 tE 1c
& 6
0 1t 10 _
10 17 1E 1C
7
o 1t t 1
i7 1C iC
{ 8
1 000
20 17 C 1C
) 9
10 0 1
20 17 1C iC
LF hd H
1t e 10
50 20 1C ic
H
L I B |
] 1c
]
1 1 ¢ ¢
@ iC KEY
CcR e = e
1 10 ¢ 50
40 40 1C /. : :'rsa\:
. HEX CLASS CODE:
1t 1 1t ¢
20 1C
/
1t 1t 1 %
20 1C

6~-17




SECTION 14
XDEF CLASCODE
CLASCQLS IDNT 0.0 CHARACTER CLASSIFICATION CODE TABLE
Sededededidedededied fdedrd i dodridedok drde R il R i R R Sl el S R de e de de e de e e e e de e e B de e e dode do deok e

* CHARACTER CLASSIFICATION CODE TABLE
RekhEhbbREAtbbdhbhb bttt ddhbitthbbtbbhbibbhbbhhhbllhhbbhhhhhhbibikkiiii
CLASCODE BQU *

DC.B 6,0,0,0,0,0,0,0,0,0,580,0,0,580,0,0

DC.B 0,0,0;0,0;0:0;050,050,0;0'0‘10;0

DC.B $80,0,0,$40,540,0,$10,0,$20,520,$50,0,$80,940,$20,$20

DC.B $17,817,$17,617,817,817,817,817.817,517,520,580,0,540,0,0

DC.B $10,$1E,$1E,$1E,$1E,$1E,$1E,$1C,$1C,$1C,$1C,$1C,$1C,$1C,$1C, $1C

DC.B $1C,$1C,$1C,51C,$1C,$1C,$1C,$1C,$1C,51C,$1C,0,0,0,0,0

DCeB (,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

DC.B 0,0p0,0'0;0,0,0;0,010.0,@,0,0,0

END
FIGURE 6-1. Assigmment of Character Class Code Values
Bredthvué — L 1 2 3 &4 5 6 7
(o] NUL DIE SP 0 @ P p
1] SOH DCt t 1 A Q a gq
2] 8T™X DC2 "~ 2 B R b r
3| ETX DC3 # 3 C 8 ¢ _ s
4 | EOT DC4 $& 4 D T d t
5/ ENQ NAK % 5 E U e u
BITS O thwru 3 6| ACK SYN & 6 F Vv f v
‘ 7 | BEL ETB 7 G W g w
8 BS CAN ( 8 H X h x
9| HT EM ) & 1 Y i vy
A LF su -~ 42 f z
B VT ESC + . K | k {
C| FF FS ., < L /7 U 7
D} CR @as - = M j m }
E| 8 RS . > N A n =
L F St us / ? 0 — o DEL

FIGURE 6-2. ASCII Code Conversion Table

6-18



CHAPTER 7
" BOOTLOAD
FILE — IPL.SY




CHAPTER 7

THE BOOTLOAD FILE ~— IPL.SY

7.1 RESIDENT DEBUG MONITOR BO QOMMAND FUNCTION

The general function of the resident debug monitor Boot (BO) command is to
access a program on disk, move it into memory space, and transfer control to
that program. If the program itself can load and transfer control to a second
program, the BO command can be used to bring in an operating system or to
implement system tests and diagnostics. Paragraph 1.1 lists the resident
debugger furnished with each VERSAdos system, and paragraph 7.4 describes the BO
command execution sequence.

7.2 FUNCTIONS OF IPL.SY

In most VERSAdos environments, the file IPL.SY is the program accessed and given
control by the BO command. (This does not apply to W0l-based systems. See
paragraph 7.3.1 for modifications required to boot VERSARdos in Wil-based
systems using the BO command.) Usually, IPL.SY loads the VERSAdos operating
system. However, IPL can-be used to load other programs such as test or
diagnostic programs. A review of the BO command line syntax shows that the
final command line field can contain a string of up to 249 ASCII characters.

IPL.SY examines the passed s*ring looking for the syntax given below. If
<filename> is not found, VERSADOS.SY is loaded.

BO command syntax:
BO [<device>][,<controller] [,<filename>[:<option>l]
where:

device Are specified as described in the appropriate firmware-
controller resident debug monitor user's manual. Defaults for both are 0.

filename Is an ASCII character string with a leading alphabetic
character. The user number, catalog, and extension of the
specified file may be specified; defaults are 0, blank, and
5Y, respectively. The wolume cannot be specified. Default
<filename> is VERSADOS.SY.

option Is one or both of the following:

I=$n Will cause <filename> to be loaded beginning at the
specified  hexadecimal address (preceding § is
reguired) .

Will cause contrel to be returned to the debug monitor
after <filename> .s loaded. {Default: control is
given to <filename»).

NOTE

Delimiting space between options is not
allowed when both options are specified.

7=-1



Examples of string subfields, BO command line:

+TESTFILL ; HL=$7F00
#0 CAT2 . TESTFILL.SY; L=8$7F00 K

Upon encountering TESTFILL, IPL.SY attempts to access and load this file using
the device and controller previously specified in the corresponding fields on
the BC command line. (In the first example, user 0, a default catalog name of
eight blanks, and a default extension of .SY are assumed.) If the attempt is
successful, TESTFILL is loaded beginning at the specified address 7F00, and
control is returned to the firmware-resident debugger in compliance with the
specified H option.

In this exanple, since the firmware-resident debugger is given control when the
load is completed and execution halts, the user can take further action by
utilizing any of the various alternatives afforded him by the command set. He
can, for example, GO to a point other than the start of TESTFILL to begin
execution.

Where control is transferred on completion of the execution of TESTFIL1 would be
determined by the program itself. For example, a diagnostic program might
display the result of a test on the EXORmacs Control Panel Status Display and
then halt, giving the user the choice of returning to the test program, or
returning to the firmware debugger, or of some other option. The disk-resident
diagnostics described in the EXORmacs Development System Maintenance Manual,
M68BKEMM, illustrate the latter altermative.

7.3 IPL.SY MODIFICATION FOR WINCHESTER/SASI DRIVERS

Each bootable target disk should be initialized, using the INIT utility and the
V option. The user should always respond with a Y when asked if a bootstrap is
wanted. The INIT utility will identify the file name it will use by default;
however, the user will be given the opportunity to enter a new name if so
desired. The user's response, as defined in the table below, should be to
accept the default value by pressing carriage return or to enter the name of the
file that should replace the default file. The current load address will be
displayed and the user will be given an opportunity to enter a new load address.
The user should respond in accordance with the load addresses defined in the
following table.

TARGET S{STEM BOOTSTRAP NEW NBME LOAD ADDRESS
EXORmacs Yes {CR) (Y]

YM01 64K version Yes File name $10100
VMOl 32K version Yes File name $10E00
G2 Yes {CR)} SEOO

wMC 68/2 Yes (CR) SEQO
MVMELLO Yes {CR} $40000
VME/10 Yes {CR) SEQO

File name should identify the bootable operating system that was created at
SYSGEN time for the specific target system (i.e., SYST:9100..VERSADOS.5Y).

7-2



7.3.1 VID Modification for Wi0l-Based Systems

No IPL.SY file is supplied with VM0l-based systems. Modifications shown below
mist be made to the media Volume Identification Directory so that the VERSAbug
BO command can boot VERSAdos without the IPL.SY program. The PATCH utility must
be used for these changes.

a. VMOL 64K version

The long word at S$EO00 in the VID should be changed to the STACK value
usad to create the EXEC process (refer to the appropriate SYSOMD.SA
file).

The long word at $E04 should be changed according to the calculations of
the following formula:

WHERL.OAD + START-UP ADDRESS - STARTRMS

The values of WHERLOAD and STARTRMS can be obtained from the appropriate
SYSMD.SA file, and the value of START-UP ADDRESS can be obtained from
the SYSGEN listing, SYSGEN.LS.

b. VM0l 32K version

The long word at $10E00 of the VID should be changed to the STACK value
used to create the EXBEC process.

When booting an alternate, untested VERSAdos program, the location of the
formerly used VERSAdos program should be noted. This information will be
required if the new program fails and the old one must be rebooted for
troubleshooting.

7.4 BO COMMAND EXECUTION SEQUENCE
The following sequence of events takes place when the BO command is executed:

a. Sector 0 (the volume ID) on the disk corresponding to the valid device
and controller is accessed and transferred into the firmware-resident
debugger scratchpad RAM.

b. Locations $F8-SFF of sector 0 are checked to ensure that they contain
the string "EXORMACS". 1If they do not, an error occurs and execution
stops. For EXORmacs systems, a B8 error is displayed on the EXORmacs
front panel.

¢. The disk sectors containing the IPL.SY load module are identified uy
examining the data locations in sector 0, as shown:

OFFSET (bytes) CONTENTS
$14 - $17 First sector to transfer (first sector of
IPL.SY load module) .
$18 - §19 Number of sectors to transfer.

The firmware-resident debugger then reads the IPL.SY load medule into
memory. Control is passed to the address specified in location $4 of the
load module, giving the IPL program control.

7-3




d. IPL will search the directory for the requested file. When the file is
found, the program sectors are accessed and transferred into memory
starting at the address specified with the L=$n option on the BO command
line, if given, or the value supplied to _he Loader Information Block
when the program was linked, if the L=$n option was not specified.

e. If a string field was not specified, register A5 is set egual to
register A6.

f. The status register is updated to reflect supervisor mode and interrupt
level seven.

g. The supervisor stack pointer is loaded with address specified in location
0 of sector 1 of the load module, plus a "bias" if the L=$n option was
specified.

h. The program counter is loaded with the execution start address specified
in location 4 of sector 1 of the lcad module, plus a "bias" if the L=$n
option was specified.

The program just loaded now has control of execution.

If an error occurs during any processing from step d. on, IPL will display an
error status on the panel lights, if operating on an EXORmacs system.

When an error occurs on a VMC 68/2 system, press SOFTWARE ABORT and display the
long word pointed to by A7. This long word contains the address of a message
describing the problem.

7.5 RESETTING SECTOR 0 POINTERS TO IPL.SY LOCATION

For VERSAdos 4.2 and subsequent versions, the user may upgrade an old IPL.SY
file by copying the new version onto the old disk with the INIT, COPY, or BACKUP
cammand. Because the new file is larger than previous revisions, adjustments
must be made to the pointers in sector 0 which tell the BO command where to find
the IPL.SY file. The INIT utility will copy the current version over the old
and adjust sector 0 so that it points to the new file location. The COPY and
BACKUP utilities will successfully replace the old file with the new, but will
not adjust sector 0. In such cases, the following procedure may be used to
change sector 0 so that it points to the new address of the IPL.SY file.

a. Display the directory of IPL.SY to find its location on the disk:

=DIR 0.&.IPL.SY;A

DIR VERSION 111781 3  3/22/83 15:20:20

5¥S5:0000. . IPL.SY

LOG # OF REC KEY FAB DB DATE DATE
STBRT END EOF RECORDS WC RC FT LEN LEN LEN LEN CHANGED ACCESSED
S42aC $42CD - - PP PP C - - - = 3/2/83 3/ 1/83
SIZE 34/822
TOIAL SIZE 34922

MUMBER OF FILES RETRIEVED = 1

=4




b. Locate the start field and the total number of sectors for this version
of IPL.SY¥. In the example above, IPL.SY starts at $428C and is $22
sectors long.

: . ¢. Do an interactive DUMP on the volume to change sector 0 of the disk. The
spooler and any printer casks may have to be terminated before the volume

can be accessed.

=DMP #HDOO; I
>R O (Read sector 0 into the change buffer)
M 16 (Begin changing at offset $16 in the change buffer)
00 *.'242 (Change the Physical Sector Number to the one found in
00 '."ZAD step 2, plus 1, bypassing Loader Information Block)
00 *."2(CR) (Skip the next byte}
00 '.'?g_I (Enter the length of IPL.SY, found in step 2, minus 1)
00 *."2.(CR) {Enter a period to terminate the interaction)
>D {bisplay the changes)
SN=50 0
00 53 59 53 20 00 00 00 00 GO 01 00 81 00 00 00 8a SYS scccencecncco
10 00 00 GO 00 00 0C 42 AD 00 21 00 00 CO 00 00 0OC esvcceBosleconee
20 00 00 00 0C 03 ED 20 20 20 20 20 20 20 20 20 20 coosse
30 20 20 20 20 20 20 20 20 20 20 30 33 30 30 P4 F7 0300..
40 OF 1E 2D 3C 4B 5A 69 78 87 9¢ A5 B4 C3 D2 E1 FO eo=CKZi%ecococoe
~ 50 OF 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 DL El FO eo=KZiXoeoonooe
' 60 Fl F2 F4 F& F9 FA FC FE FF 7F BF DF EF 6F AF CF cesscscesacesOee
§ 70 4F 8F OF 07 OB 0D OE 06 (OA OC 04 08 04 02 01 00 Qeceococsoscosses
80 G0 060 00 G0 00 00 00 Q00 00 00 00 00 00 82 0CG 08
90 00 00 00 0C 00 00 00 00O 00 00 00 00 00 00 00 00
A0 00 00 00 00 OC 00 00 00 00 90 GO 0C 00 00 00 00 seveccssecessves
: B0 00 G0 00 00 00 00 00 00 0C 00 GO0 Q0 CO 0C 00 00
; (8] 00 00 00 Q0 00 Q0 00 GG 0C 0OCG 00 00 00 00 00 GO scseseccnseocens
? DO 00 00 00 00 00 00 G0 00 00 00 00 00 00 GO 00 Q0 sseccssvscsorsas
‘ EQ GO 00 GO 06 00 0C GO OC OG 00 00 00 00 00 00 Q0 cseaencessssesse
;ﬁ FO 00 00 00 OC 00 00 00 00 45 58 4F 52 4D 41 43 53 ceeeeeoo EXORMACS
WO (Write sector 0 back cut to the disk)
§ >Q (Quit DUMP and try to boot up)
i
:
1
§;

d. If the starting Physical Sector Number of the IPL.SY file ($42AC in the
example above) is too large to fit in a word value, then place it into a
long word value starting at offset $14 in sector 0. If the length of the
IPL.SY file should ever be larger than one byte, use the word which
begins at offset $18. (The ezample above uses ounly part of the actual
fields.)

For more information on file structure, refer to the description of the REPAIR
utility.

7-5/7-6







BAPPENDIX A

S-RECORD QUTPUT FORMAT

The S-record format for output modules was devised for the purpose of encoding
programs or data files in a printable format for transportation between computer
systems. The transportation process can thus be visually monitored and the
S-records can be more easily edited.

S=-RECORD CONTENT

When viewed by the user, S-records are essentially character strings made of
several fields which identify the record type, record length, memory address,
code/data, and checksum. FEach byte of binary data is encoded as a 2-character
hexadecimal mumber: the first character representing the high-order four bits,
and the second the low-order four bits of the byte.

The five fields which comprise an S-record are shown below:

| type | record length | address | code/data | checksum |
where the fields are composed as follows:
PRINTABLE
FIELD CHARACTERS CONTENTS
type 2 S-record type -- S0, 81, etc.
record length 2 The count of the character pairs in the record,
excluding the type and record length.
address 4, 6, cxr 9 The 2-, 3-, or 4-byte address at which the data
field is to be loaded into memory.
code/data 0-2n From 0 to n bytes of executable code, memory-
loadable data, or descriptive information. For
compatibility with teletypewriters, some programs
may limit the number of bytes to as few as 28 (56
printable characters in the S-record).
checksum 2 The least significant byte of the one's complement

of the sum of the values represented by the pairs
of characters making up the record lenjth, address,
and the code/data fields.

Each record may be terminated with a CR/LF/NUL. Additionally, an S-record may
have an initial field to accommodate other data such as line numbers generated
by some time-sharing systems.

Accuracy of transmission is ensured by the record length (byte count) and
checksun fields.

A1




S-RECORD TYPES

Eight types of S-records have been defined to accommodate the several needs of
the encoding, transportation, and decoding functions. The various Motorola
upload, download, and other record transportation control programs, as well as
cross assemblers, linkers, and other file-creating or debugging programs,
utilize only those S-records which serve the purpose of the program. For
specific information on which S-records are supported by a particular program,
the user's manual for that program must be consulted.

An S-record-format module may contain S-records of the following types:

S0 The header record for each block of S-records. The code/data field may
contain any descriptive information identifying the following block of
S-records. Under VERSAdos, the resident linker's IDENT command can be
used to designate module name, version number, revision nuwber, and
description information which will make up the header record. The
address field is normally zeros.

Sl A record containing code/data and the 2-byte address at which the
code/data is to reside.

S2 A record containing code/data and the 3-byte address at which the
code/data is to reside.

S3 A record containing code/data and the 4-byte address at which the
code/data is to reside.

S5 A record containing the number of Sl, S2, and S3 records transmitted in
a particular block. This count appears in the address field. There is
no code/data field.

S7 A termination record for a block of S3 records. The address field may
optionally contain the 4-byte address of the instruction to which
control is to be passed. There is no code/data field.

S8 A termination record for a block of S2 records. The address field may
optionally contain the 3-byte address of the instruction to which
control is to be passed. There is no code/data field.

S9 A termination record for a block of Sl records. The address field may
optionally contain the 2-byte address of the instruction to which
control is to be passed. Under VERSAdos, the resident linker's ENTRY
command can be used to specify this address. If not specified, the
first entry point specification encountered in the object module input
will be used. There is no code/data field.

Only one termination record is used for each block of S-records. 857 and S8
records are usually used only when control is to be passed to a 3- or 4-byte
address. Otherwise, an S9 record is used for termination. Normally, only one
header record is used, although it is possible for multiple header records to
occur.

B2




CREATION OF S-RECORDS

S-record-format programs may be produced by several dump utilities, debuggers,
the VERSAdos resident linkage editor, or several cross assemblers or cross
linkers. On EXORmacs and VME/10, the Build Load Module (MBLM) utility allows an
executable load module to be built from S-records. MBIM has a counterpart
utility in BUILDS, which allows an S-record file to be created from a load
module on any VERSAJOS system.

Programs are available for downloading or uploading a file in S-record format

fron a host system to an 8-bit microprocessor-based or a 16-bit

microprocessor-based system.

EXBMPLE

Shown below is a typical S-record-format module, as printed or displayed:
S00600004844521B
S$1130000285F245F2212226A000424290008237C2A
$11300100002000800082629001853812341001813
S113002041E900084E42234300182342000824A952
S107003000144ED492
S9030000FC

The module consists of one SO0 record, four Sl records, and an S9 record.

The S0 record is comprised of the following character pairs:

S0 S-record type S0, indicating that it is a header record.

06 Hexadecimal 06 (decimal 6), indicating that six character pairs (or
ASCII bytes) follow.

gg } A 4-character, 2-byte address field; zeros in this example.
48

44} ASCIL H, D, and R - "HDR".

52

1B  The checksum.

The first Sl record is explained as follows:

S1 S-record type Sl1, indicating that it is a code/data record to be
loaded/verified at a 2-byte address.

13 Hexadecimal 13 (decimal 19), indicating that 19 character pairs,
representing 19 bytes of binary data, follow.

00} A 4-character, 2-byte address field; hexadecimal address 0000; where
00 ] the data which follows is to be loaded.

A3




f;
zr
|
|
s
-
E

The next 16 character pairs of the first Sl record are the ASCII bytes of the
actual program code/data. In this assewbly language example, the hexadecimal
opcodes of the program are written in sequence in the code/data fields of the Sl
records:

OPCODE INSTRUCTION

455F MOVE.L (B7)+,44

245F MOVE.L (A7) +,A2

2212 MOVE.L (a2) ,DL

22620004 MWE.L 4(a2) ,AL

24290008 MOVE.L FUNCTION{AL) ,D2

237C MOVE.L #FORCEFUNC ,FUNCTICN (A1)

. (The balance of this code is continued in the
. code/data fields of the remaining Sl records,
. and stored in memory location 0010, etc.)
2A The checksum of the first Sl record.
The second and third S1 recorxds each also contain $13 (19) character pairs and
are ended with checksums 13 and 52, respectively. The fourth Sl record contains
07 character pairs and has a checksum of 92.
The S9 record is explained as follows:
$9 S-record type S9, indicating that it is a termination record.
03 Hexadecimal 03, indicating that three character pairs (3 bytes) follow.

00

00} The address field, zeros.

FC The checksum of the S9 record.
Each printable character in an S-record is encoded in hexadecimal (ASCII in this

example) representation of the binary bits which are actually transmitted. For
example, the first Sl record above is sent as:

Lengeh addzens codefduts chiackeum

L]
-
L]
™
L]
L
~
“
L
Ll
“
&
L
[
[

3 3 3 6 3 4 1

o o o oo o o o e o e o e e - o o o

b4




SUGGESTION/PROBLEM REPORT

Motorola welcomes your comments on its products and publications. Please use

this form.

To: Motorola Inc.
Microsystems
2500 S. Diablo Way
Tempe, Arizona 85282
Attention: publications Manager
Maildrop DW1G4

~ Field Service Support: (800) 528-1908

(602) 829-3100

Product: Manual s

COMMENTS 5

Please Print

Name “Title

Company “Division

Street Mall Drop Prione Number
City State Zip




(M) mororoLa Semiconductor Products Inc.

£0. BOX 20812 @ PHOENIX, ARIZONA 85036 © A SUBSIDIARY OF MOTOROLA INC.

18347 PRINTED IN 1SA (8/83) MPS 30




